ISBN-13: 9781119750567 / Angielski / Twarda / 2021 / 608 str.
ISBN-13: 9781119750567 / Angielski / Twarda / 2021 / 608 str.
Preface xiii1 Regulations and Other Developments/Trends/Initiatives Driving Non-Halogenated Flame Retardant Use 1Alexander B. Morgan1.1 Regulatory History of Halogenated vs. Non-Halogenated Flame Retardants 11.2 Regulations of Fire Safety and Flame Retardant Chemicals 61.3 Current Regulations 81.3.1 International - United Nations 81.3.2 United States (Federal vs. State) 91.3.3 Canada 101.3.4 European Union 101.3.5 Asia 111.3.6 China 111.3.7 Japan 121.3.8 Korea 121.3.9 Australia 131.4 Fire Safety and Non-Fire Safety Issues Requiring Non-Halogenated Flame Retardants 131.5 Regulatory Outlook and Future Market Drivers 16References 172 Phosphorus-Based Flame Retardants 23Sergei Levchik2.1 Introduction 242.2 Main Classes of Phosphorus-Based Flame Retardants 252.3 Red Phosphorus 262.4 Ammonium and Amine Phosphates 292.5 Metal Hypophosphites, Phosphites and Dialkyl Phosphinates 362.6 Aliphatic Phosphates and Phosphonates 402.7 Aromatic Phosphates and Phosphonates 482.8 Aromatic Phosphinates 582.9 Phosphine Oxides 622.10 Phosphazenes 642.11 Environmental Fate and Exposure to Organophosphorus FRs 652.12 Conclusions and Further Trends 67References 683 Mineral Filler Flame Retardants 101Reiner Sauerwein3.1 Introduction 1013.2 Industrial Importance of Mineral Flame Retardants 1023.2.1 Market Share of Mineral FRs 1033.2.2 Synthetic Mineral FRs within the IndustrialChemical Process Chain 1043.2.3 Natural Mineral FRs 1063.3 Overview of Mineral Filler FRs 1073.3.1 Mineral Filler Flame Retardants by Chemistry 1073.3.2 Classification by Production Process 1093.3.2.1 Crushing and Grinding 1093.3.2.2 Air Classification 1103.3.2.3 Precipitation and Their Synthetic Processes 1103.3.2.4 Surface Treatment 1133.3.3 Physical Characterisation of Mineral FRs 1143.3.3.1 Particle Shape/Morphology/Aspect Ratio 1153.3.3.2 Particle Size Distribution 1163.3.3.3 Sieve Residue 1173.3.3.4 BET Surface Area 1183.3.3.5 Oil Absorption 1183.3.3.6 pH-Value/Specific Conductivity 1193.3.3.7 Bulk Density and Powder Flowability 1203.3.3.8 Thermal Stability/Loss on Ignition/Endothermic Heat 1223.3.4 General Impact of Mineral FRs on Polymer Material Properties 1233.3.4.1 Optical Properties 1233.3.4.2 Mechanical Properties 1233.3.4.3 Water Uptake and Chemical Resistance 1243.3.4.4 Thermal Properties 1263.3.4.5 Electrical Properties 1273.3.4.6 Rheological Properties 1283.4 Working Principle of Hydrated Mineral Flame Retardants 1283.4.1 Filler Loading, Flammability and Flame Propagation 1303.4.2 Smoke Suppression 1323.4.3 Heat Release 1343.5 Thermoplastic and Elastomeric Applications 1363.5.1 Compounding Technology 1363.5.2 Compound Formulation Principals 1383.5.3 Wire & Cable 1403.5.4 Other Construction Products 1473.5.5 Special Applications 1503.5.6 Engineering Plastics for E&E Applications 1523.6 Reactive Resins/Thermoset Applications 1543.6.1 Production Processes for Glass Fiber-Reinforced Polymer Composite 1563.6.1.1 Paste Production 1563.6.1.2 Hand Lamination/Hand-Lay-Up 1573.6.1.3 SMC and BMC 1573.6.1.4 Pultrusion 1583.6.1.5 RTM/RIM 1583.6.2 Formulation Principles 1593.6.3 Public Transport Applications of GFRP 1603.6.4 E&E Applications 1613.6.5 Construction and Industrial Applications 1633.7 Conclusion, Trends and Challenges 164References 1654 Intumescence-Based Flame Retardant 169Serge Bourbigot4.1 Introduction 1694.2 Fundamentals of Intumescence 1724.3 Intumescence on the Market 1794.4 Reaction to Fire of Intumescent Materials 1804.5 Resistance to Fire of Intumescent Materials 2044.6 Conclusion and Future Trends 224References 2255 Nitrogen-Based Flame Retardants 239Alexander B. Morgan and Martin Klatt5.1 Introduction 2395.2 Main Types of Nitrogen-Based Flame Retardants 2405.3 Ammonia-Based Flame Retardants 2415.3.1 Ammonium Polyphosphate 2425.3.2 Other Ammonia Salts 2465.4 Melamine-Based Flame Retardants 2475.4.1 Melamine as Flame Retardant 2485.4.2 Melamine Salts 2505.4.3 Melamine Cyanurate 2515.4.4 Melamine Polyphosphate 2545.4.5 Melamine Condensates and Its Salts 2565.5 Nitrogen-Based Radical Generators 2575.6 Phosphazenes, Phospham and Phosphoroxynitride 2615.7 Cyanuric-Acid Based Flame Retardants 2635.8 Summary and Conclusion 264References 2656 Silicon-Based Flame Retardants 271Alexander B. Morgan and Mert Kilinc6.1 Introduction 2716.2 Basics of Silicon Chemistry 2726.3 Industrial Applications of Silicones 2746.4 Silicon-Based Materials as Flame Retardant Materials 2776.4.1 Inorganic Silicon-Based Flame Retardants 2786.4.1.1 Silicon Dioxide (SiO2) (Silica) 2786.4.1.2 Wollastonite 2806.4.1.3 Magadiite 2816.4.1.4 Sepiolite 2816.4.1.5 Kaolin 2826.4.1.6 Mica 2836.4.1.7 Talc 2836.4.1.8 Halloysite 2846.4.1.9 Layered Silicate Nanocomposites 2856.4.1.10 Sodium Silicate 2896.4.1.11 Silsesquioxane 2896.4.2 Organic Silicone-Based Flame Retardants 2906.4.2.1 Polyorganosiloxanes 2906.4.2.2 Silanes 2926.4.3 Other Silicone-Based Flame Retardants 2936.4.4 Silicone/Silica Protective Coatings 2946.5 Mode of Actions of Silicone-Based Flame Retardants and Practical Use Considerations 2946.5.1 Silicon Dioxide 2946.5.2 Silicate-Based Minerals 2956.5.3 Silicones 2966.6 Future Trends in Silicon-Based Flame Retardants 2966.7 Summary and Conclusions 298References 2997 Boron-Based Flame Retardants in Non-Halogen Based Polymers 309Kelvin K. Shen7.1 Introduction 3097.2 Major Functions of Borates in Flame Retardancy 3107.3 Major Commercial Boron-Based Flame Retardants and Their Applications 3117.4 Properties and Applications of Boron-Base Flame Retardants 3117.4.1 Boric Acid [B2O3·3H2O/B(OH)3], Boric Oxide (B2O3) 3117.4.2 Alkaline Metal Borate 3147.4.2.1 Borax Pentahydrate (Na2O·2B2O3·5H2O), Borax Decahydrate (Na2O·2B2O3·10H2O) 3147.4.2.2 Disodium Octaborate Tetrahydrate (Na2O·4B2O3·4H2O) 3157.4.3 Alkaline-Earth Metal Borate 3177.4.3.1 Calcium Borates (xCaO·yB2O3·zH2O) 3177.4.3.2 Magnesium Borate (xMgO·yB2O3·zH2O) 3177.4.4 Transition Metal Borates 3177.4.4.1 Zinc Borates (xZnO·yB2O3·zH2O) 3177.4.5 Nitrogen-Containing Borates 3247.4.5.1 Melamine Diborate [(C3H8N6)O·B2O3·2H2O)]/(C3H6N6·2H3BO3 ) 3247.4.5.2 Ammonium Pentaborate [(NH4)2O·5B2O3·8H2O)] 3257.4.5.3 Boron Nitride (h-BN) 3257.4.5.4 Ammonium Borophosphate 3277.4.6 Phosphorus-Containing Borates 3277.4.6.1 Boron Phosphate (BPO4) 3277.4.6.2 Metal Borophosphate 3287.4.7 Silicon-Containing Borates 3287.4.7.1 Borosilicate Glass and Frits 3287.4.8 Carbon-Containing Boron or Borates 3297.4.8.1 Graphene (Boron-Doped) 3297.4.8.2 Boric Acid Esters [B(OR)3] 3297.4.8.3 Boronic Acid [ArB(OH)2] 3307.4.8.4 Boron Carbide (B4C) 3317.5 Mode of Actions of Boron-Based Flame Retardants 3317.6 Conclusions 332References 3338 Non-Halogenated Conformal Flame Retardant Coatings 337Federico CarosioList of Acronyms 3378.1 Introduction to Conformal Coatings: The Role of Surface During Combustion 3398.2 Fabrics 3468.2.1 Natural Fabrics 3478.2.2 Synthetic Fabrics and Blends 3588.2.3 Process Equipment and Related Patents 3718.3 Porous Materials 3738.3.1 Open Cell PU Foams 3748.3.2 Other Porous Substrates 3868.3.3 Process Equipment and Related Patents 3918.4 Other Substrates 3938.5 Future Trends and Needs 396References 3979 Multicomponent Flame Retardants 413Bernhard Schartel9.1 The Need for Multicomponent Flame Retardants 4139.2 Concepts 4199.3 Combination with Fillers 4249.4 Adjuvants 4289.5 Synergists 4319.6 Combinations of Different Flame Retardants 4359.7 Combinations of Different Flame-Retardant Groups in One Flame Retardant 4379.8 Conclusion 439References 43910 Other Non-Halogenated Flame Retardants and Future Fire Protection Concepts & Needs 475Alexander B. Morgan, Paul A. Cusack and Charles A. Wilkie10.1 The Periodic Table of Flame Retardants 47510.2 Transition Metal Flame Retardants 47810.2.1 Vapor Phase Transition Metal Flame Retardants 47810.2.2 Condensed Phase Transition Metal Flame Retardants 47910.2.2.1 Metal Oxides 48010.2.2.2 Metal Complexes 48110.3 Sulfur-Based Flame Retardants 48410.4 Carbon-Based Flame Retardants 48510.4.1 Cross-Linking Compounds - Alkynes, Deoxybenzoin, Friedel-Crafts, Nitriles,Anhydrides 48610.4.1.1 Alkynes 48610.4.1.2 Deoxybenzoin 48810.4.1.3 Friedel-Crafts 48810.4.1.4 Nitriles 49010.4.1.5 Anhydrides 49010.4.2 Organic Carbonates 49110.4.3 Graft Copolymerization 49210.4.4 Expandable Graphite 49310.5 Bio-Based Materials 49410.6 Tin-Based Flame Retardants 49610.6.1 Introduction 49610.6.2 Zinc Stannates 49710.6.3 Halogen-Free Applications 49810.6.3.1 Polyolefins 49910.6.3.2 Styrenics 50010.6.3.3 Engineering Plastics 50010.6.3.4 Thermosetting Resins 50310.6.3.5 Elastomers 50310.6.3.6 Paints and Coatings 50510.6.3.7 Textiles 50610.6.4 Novel Tin Additives 50610.6.4.1 Coated Fillers 50710.6.4.2 Tin-Modified Nanoclays 50910.6.4.3 Mechanism of Action 51010.6.4.4 Summary 51210.7 Polymer Nanocomposites 51310.8 Engineering Non-Hal FR Solutions 51310.8.1 Barrier Fabrics 51410.8.2 Coatings 51510.8.2.1 Inorganic Coatings 51510.8.2.2 IR Reflective Coatings 51710.8.2.3 Nanoparticle Coatings 51710.8.2.4 Conformal/Integrated Coatings 51810.9 Future Directions 51910.9.1 Polymeric Flame Retardants and Reactive Flame Retardants 52110.9.2 End of Life Considerations For Flame Retardants 52410.9.3 New and Growing Fire Risk Scenarios 52810.9.4 Experimental Methodology for Flame Retardant Screening 531References 532Index 555
Alexander B. Morgan, PhD has over twenty-five years of experience in the areas of materials flammability, polymeric material flame retardancy, fire science, fire testing, thermal decomposition chemistry, and fire safety engineering with an emphasis on chemical structure property relationships and fire safe material design. He has helped academic, government, and industrial customers solve their flame retardant and fire safety needs in a wide range of applications. Dr. Morgan is on the editorial review board for Fire and Materials, and is the Editor-in-Chief for the Journal of Fire Science. He is also a member of ASTM, Sigma Xi, International Association of Fire Safety Scientists, and the American Chemical Society.
1997-2024 DolnySlask.com Agencja Internetowa