ISBN-13: 9781119730002 / Angielski / Twarda / 2021 / 368 str.
ISBN-13: 9781119730002 / Angielski / Twarda / 2021 / 368 str.
Preface xvList of Contributors xix1 Biodiesel: Different Feedstocks, Conventional Methods, and Factors Affecting its Production 1Hossein Esmaeili and Sajad Tamjidi1.1 Introduction 11.2 Different Feedstocks for Biodiesel Production 31.2.1 Vegetable Sources 31.2.2 Waste Oils 31.2.3 Animal Fats 51.2.4 Microalga Oil 61.3 Conventional Methods of Biodiesel Production 81.3.1 Microemulsion 81.3.2 Pyrolysis or Thermal Cracking 81.3.3 Transesterification 81.4 Catalysts Used in Biodiesel Production 91.4.1 Homogeneous Catalysts 91.4.1.1 Homogeneous Alkaline Catalysts 91.4.1.2 Homogeneous Acidic Catalysts 91.4.2 Heterogeneous Catalysts 101.4.2.1 Heterogeneous Alkaline Catalysts 101.4.2.2 Heterogeneous Acid Catalysts 101.4.3 Enzymatic Catalysts 111.4.4 Nanocatalysts 121.5 Effects of Different Factors on Biodiesel Production Yield 151.5.1 Reaction Temperature 151.5.2 Alcohol to Oil Molar Ratio 161.5.3 Reaction Time 171.5.4 Catalyst Dosage 171.5.5 pH 171.5.6 Mixing Rate 171.5.7 Fatty Acids 181.5.8 Water Content 181.6 Physical Properties of Biodiesel 181.7 Conclusions 19References 202 Nano(Bio)Catalysts: An Effective Tool to Utilize Waste Cooking Oil for the Biodiesel Production 31Rushikesh Fopase, Swati Sharma and Lalit M. Pandey2.1 Introduction 312.2 Waste Cooking Oils 332.3 Pretreatment of WCOs 332.4 Transesterification Process 342.4.1 Kinetics of Transesterification 362.5 Enzymatic Biocatalysts 372.5.1 Lipases 382.5.1.1 Extracellular Lipases 382.5.1.2 Intracellular Lipases 392.6 Enzyme Immobilization Techniques 412.7 Physical Methods 422.7.1 Adsorption 422.7.2 Encapsulation 452.7.3 Entrapment 462.8 Chemical Methods 472.8.1 Covalent Bonding 472.8.2 Cross-Linking 492.8.3 Summary 502.9 Conclusions 50References 513 A Review on the Use of Bio/Nanostructured Heterogeneous Catalysts in Biodiesel Production 59Samuel Santos, Jaime Puna, João Gomes and Jorge Marchetti3.1 Introduction 593.2 Use of Micro- and Nanostructured Heterogeneous Catalysts in Biodiesel Production 623.2.1 Microstructured Heterogeneous Catalysts 623.2.1.1 Solid Acid Catalysts 623.2.1.2 Solid Base Catalysts 633.2.2 Nanostructured Heterogeneous Catalysts 653.2.2.1 Gas Condensation 653.2.2.2 Vacuum Deposition 653.2.2.3 Chemical Deposition 663.2.2.4 Sol-Gel Method 663.2.2.5 Impregnation 673.2.2.6 Nanogrinding 683.2.2.7 Calcination-Hydration-Dehydration 683.3 Enzymatic Catalysis 693.3.1 Heterogeneous Biocatalysts (Lipases) and Their Immobilization 693.3.1.1 Physical Adsorption 703.3.1.2 Entrapment 703.3.1.3 Covalent Bonding 713.3.1.4 Cross-Linking 723.3.2 Nano(Bio)Catalysts: Immobilization of Enzymes on Nanosupports 733.3.2.1 Nanoparticles 733.3.2.2 Carbon Nanotubes 753.3.2.3 Nanofibers 763.3.2.4 Nanocomposites 763.4 Conclusions 77References 784 Calcium-Based Nanocatalysts in Biodiesel Production 93Priti R. Pandit and Archit Mohapatra4.1 Introduction 934.2 Nanocatalysts 944.3 CaO-Based Nanocatalysts for Biodiesel Production 954.3.1 Synthesis and Characterization of CaO-Based Nanocatalysts Using Waste Material 994.3.2 CaO Nanocatalysts Supported with Metal Oxides for Biodiesel Production 1024.4 Effects of Different Parameters on Biodiesel Production 1054.4.1 Reaction Time 1054.4.2 Temperature 1054.4.3 Methanol to Oil Molar Ratio 1064.4.4 Catalyst Load 1064.5 Reusability and Leaching of Nanocatalysts 1064.6 Conclusions 107References 1075 Titanium Dioxide-Based Nanocatalysts in Biodiesel Production 115Elijah Olawale Ajala, Mary Adejoke Ajala and Harvis Bamidele Saka5.1 Introduction 1155.2 Natural Occurrences of Titania 1175.2.1 Rutile 1175.2.2 Anatase 1185.2.3 Rhombic Brookite 1185.2.4 Kaolin Clays 1185.2.5 Ilmenites or Manaccanite 1205.3 Precursors Used for the Synthesis of TiO2 NPs 1205.3.1 Titanium Tetrachloride 1215.3.2 Titanium Tetraisopropoxide 1215.3.3 Titanium Butoxide 1225.4 Methods for the Synthesis of TiO2 NPs 1225.4.1 Physical Methods 1225.4.1.1 Ball Milling 1225.4.1.2 Laser Ablation/Photoablation 1235.4.1.3 Sputtering 1235.4.2 Chemical Methods 1235.4.2.1 Microemulsion 1235.4.2.2 Precipitation 1245.4.2.3 Sol-Gel 1245.4.2.4 Hydrothermal 1255.4.2.5 Solvothermal 1255.4.2.6 Electrochemical/Deposition 1255.4.2.7 Sonochemical 1265.4.2.8 Direct Oxidation 1265.4.3 Biological Methods 1265.4.3.1 Green Synthesis Using Plant Extracts 1265.4.3.2 Microbial Synthesis 1285.4.3.3 Enzyme-Mediated Synthesis 1295.5 Methods for the Synthesis of TiO2-Based Nanocatalysts 1305.5.1 Wet Impregnation 1305.5.2 Dry Impregnation 1315.6 TiO2-Based Nanocatalysts for Biodiesel Production 1315.6.1 Sulfated TiO2 Nanocatalysts 1315.6.2 Alkaline TiO2 Nanocatalysts 1335.6.3 Co-Transition TiO2 Nanocatalysts 1335.6.4 Alkali TiO2 Nanocatalysts 1345.6.5 Bimetallic TiO2 Nanocatalysts 1355.6.5.1 TiO2-Pd-Ni 1355.6.5.2 TiO2-Au-Cu 1355.7 Other TiO2 Nanocomposite Catalysts 1355.8 Conclusions 136References 1366 Zinc-Based Nanocatalysts in Biodiesel Production 143Avinash P. Ingle6.1 Introduction 1436.2 Feedstocks Used for Biodiesel Production 1446.2.1 Vegetable Oils 1446.2.2 Microbial Oils 1456.2.3 Animal Fats 1456.2.4 Waste Oils 1456.2.5 Biomass 1466.3 Conventional Methods of Biodiesel Production 1466.3.1 Pyrolysis 1466.3.2 Transesterification 1466.3.2.1 Homogeneous Acid and Base (Alkali)-Catalyzed Transesterification 1466.3.2.2 Heterogeneous Acid and Base (Alkali)-Catalyzed Transesterification 1476.3.2.3 Enzymatic Transesterification 1476.4 Nanotechnology in Biodiesel Production 1486.5 Zinc-Based Nanocatalysts in Biodiesel Production 1486.6 Conclusions 151References 1527 Carbon-Based Nanocatalysts in Biodiesel Production 157Rahul Bhagat, Harris Panakkal, Indarchand Gupta and Avinash P. Ingle7.1 Introduction 1577.2 Feedstocks Used for Biodiesel Production 1587.2.1 Vegetable Oils 1587.2.2 Algae 1597.2.3 Animal Fats 1607.2.4 Waste Cooking Oils 1607.3 Conventional Heterogeneous Catalysts 1607.4 Carbon-Based Heterogeneous Nanocatalysts 1647.4.1 Carbon Nanotubes 1667.4.2 Sulfonated Carbon Nanotubes 1677.4.3 Graphene/Graphene Oxide-Based Nanocatalysts 1687.4.4 Carbon Nanofibers and Carbon Dots 1697.4.5 Carbon Nanohorns 1707.4.6 Other Carbon-Based Nanocatalysts 1717.5 Conclusions 174References 1748 Functionalized Magnetic Nanocatalysts in Biodiesel Production 183Kalyani Rajkumari and Lalthazuala Rokhum8.1 Introduction 1838.2 Relevance of Heterogeneous Catalysis in Biodiesel Production 1858.3 Surface Modification and Functionalization of NPs 1868.4 Applications of Functionalized Magnetic Nanocatalysts in Biodiesel Production 1868.4.1 Acid-Functionalized Magnetic Nanocatalysts 1868.4.2 Base-Functionalized Magnetic Nanocatalysts 1898.4.3 Magnetic Nanocatalysts Functionalized withWaste Materials 1908.4.4 Ionic Liquid-Immobilized Magnetic Nanocatalysts 1928.5 Conclusions 194References 1959 Bio-Based Catalysts in Biodiesel Production 201Umer Rashid, Shehu-Ibrahim Akinfalabi, Naeemah A. Ibrahim and Chawalit Ngamcharussrivichai9.1 Introduction 2019.2 Biodiesel: A Potential Source of Renewable Energy 2049.2.1 Progress in Biodiesel Development 2049.2.2 Development of Biodiesel in Malaysia 2059.2.3 Biodiesel Feedstocks 2069.2.3.1 PFAD as a Biodiesel Feedstock 2079.2.4 Common Methods Used for Biodiesel Reaction 2089.2.4.1 Esterification 2099.2.4.2 Transesterification 2109.3 Homogeneous Catalysis in Biodiesel Production 2119.4 Heterogeneous Catalysis in Biodiesel Production 2139.5 Catalyst Supports 2159.5.1 Alumina 2169.5.2 Silicate 2169.5.3 Zirconium Oxide 2179.5.4 Activated Carbon 2179.6 Heterogeneous Bio-Based Acid Catalysts 2179.7 Synthesis of Bio-Based Solid Acid Catalysts 2189.7.1 Palm Tree Fronds and Spikelets 2199.7.2 Jatropha curcas 2199.7.3 Coconut Shells 2209.7.4 Rice Husks 2209.7.5 Bamboo 2219.7.6 Cocoa Pod Husks 2219.7.7 Hardwoods 2229.7.8 Peanut Hulls 2229.7.9 Wood Mixtures 2239.7.10 Palm Kernel Shells 2239.8 Magnetic Bio-Based Catalysts for Biodiesel Production 2249.9 Characterization of Bio-Based Catalysts 2289.9.1 Field Emission Scanning Electron Microscopy (FESEM) 2289.9.2 Fourier Transform Infrared (FT-IR) 2299.9.3 X-Ray Diffraction (XRD) 2299.9.4 Thermogravimetric Analysis (TGA) 2309.9.5 Temperature-Programmed Desorption - Ammonia (TPD-NH3) 2319.9.6 Brunauer-Emmett-Teller (BET) Analysis 2319.10 Reaction Parameters Affecting Biodiesel Production 2329.10.1 Reaction Time 2329.10.2 Catalyst Concentration 2329.10.3 Methanol to Fat/Oil Molar Ratio 2329.10.4 Reaction Temperature 2339.10.5 Mixing Rate 2359.11 Conclusions 235References 23610 Heterogeneous Nanocatalytic Conversion of Waste to Biodiesel 249Nilutpal Bhuyan, Manash J. Borah, Neelam Bora, Dipanka Saikia, Dhanapati Deka and Rupam Kataki10.1 Introduction 24910.2 Role of Catalysts in Biodiesel Production 25010.3 Feedstocks for Biodiesel Production 25110.3.1 First-Generation Feedstocks or Edible Oils 25110.3.2 Second-Generation Feedstocks or Non-Edible Oils 25210.3.3 Third-Generation Feedstocks or Algae 25210.3.4 Other Feedstocks 25310.4 Biodiesel Production Process 25310.4.1 Acid-Catalyzed Transesterification 25410.4.1.1 Mechanism of Acid-Catalyzed Transesterification 25610.4.2 Alkali- or Base-Catalyzed Transesterification 25610.4.2.1 Mechanism of Alkali- or Base-Catalyzed Transesterification 25810.4.3 Other Types of Transesterification 25810.5 Variables Affecting Transesterification 25910.6 Heterogeneous Nanocatalysts for Biodiesel Production 26010.7 Characterization of Nanoparticles Used for Biodiesel Production 26210.7.1 X-Ray Diffraction (XRD) 26210.7.2 Scanning Electron Microscopy (SEM) 26210.7.3 Energy Dispersive X-Ray Analysis (EDX) 26210.7.4 Transmission Electron Microscopy (TEM) 26410.7.5 Atomic Force Microscopy (AFM) 26410.7.6 Raman Spectroscopy 26410.7.7 Fourier Transform Infrared Spectroscopy (FT-IR) 26410.7.8 X-Ray Photoelectron Spectroscopy (XPS) 26410.7.9 Thermogravimetric Analysis (TGA) 26510.8 Influence of Nanoparticle Properties on Biodiesel Production 26510.9 Safety Issues Around the Application of Nanocatalysts in Biodiesel Production 26710.10 Future Perspectives 26710.11 Conclusions 268References 26911 Application of Rare Earth Cation-Exchanged Nanozeolite as a Support for the Immobilization of Fungal Lipase and their Use in Biodiesel Production 279Guilherme de Paula Guarnieri, Adriano de Vasconcellos, Fábio Rogério de Moraes and José Geraldo Nery11.1 Introduction 27911.2 Case Study 28211.2.1 Origins of Materials and Enzymes 28211.2.2 Preparation of Na-FAU Nanozeolites 28211.2.3 Ion-Exchange Experiments 28311.2.4 Enzyme Immobilization on to Nanozeolitic Supports 28311.2.5 Physicochemical Characterization of As-Synthesized Nanozeolites and Nanozeolite-Enzyme Complexes 28411.2.6 Synthesis of FAAEs 28611.2.7 FAEE Yields Obtained with Nanozeolite Complexes 28711.2.8 Model of Lipase Immobilization on to Zeolite Supports 28711.3 Conclusions 290References 29012 Lipase-Immobilized Magnetic Nanoparticles: Promising Nanobiocatalysts for Biodiesel Production 295Tooba Touqeer, Muhammad Waseem Mumtaz and Hamid Mukhtar12.1 Introduction 29512.2 Transesterification for Biodiesel Production 29612.2.1 Homogenous Catalysts 29612.2.2 Heterogeneous Catalysts 29712.2.3 Enzymatic Catalysts 29712.3 Advantages of Using Magnetic Nanobiocatalysts 29712.3.1 High Enzyme Loading and Surface Area to Volume Ratio 29812.3.2 Low Mass Transfer Restriction and High Brownian Movement 29912.3.3 Effortless Recovery and Reusability 29912.3.4 Stability 29912.4 Synthesis of Nanobiocatalysts 29912.4.1 Preparation and Functionalization of Nanostructures 29912.4.2 Immobilizing Enzymes on Nanomaterials 30012.4.2.1 Adsorption Immobilization 30012.4.2.2 Covalent Immobilization 30112.5 Techniques for the Characterization of Nanobiocatalysts 30212.6 Transesterification Using Magnetic Nanobiocatalysts 30312.7 Factors Affecting Enzymatic Transesterification 30412.7.1 Type of Alcohol Used 30412.7.2 Solvent 30512.7.3 Reaction Temperature 30612.7.4 Water Content 30612.7.5 Alcohol to Oil Molar Ratio 30612.7.6 Source of Lipase 30612.8 Conclusions 307References 30713 Technoeconomic Analysis of Biodiesel Production Using Different Feedstocks 313Shemelis Nigatu Gebremariam13.1 Introduction 31313.2 Biodiesel Production Technologies 31513.3 Feedstock Types for Biodiesel Production 31713.4 Technical Performance Evaluation of Biodiesel Production 31813.4.1 Fuel Properties of Biodiesel 31913.4.1.1 Flash Point 31913.4.2 Cold Flow Properties 31913.4.2.1 Cloud Point 32013.4.2.2 Pour Point 32013.4.2.3 Cold Filter Plugging Point (CFPP) 32113.4.3 Cetane Number 32113.4.4 Density 32213.4.5 Viscosity 32313.4.6 Oxidation Stability 32313.4.7 Biodiesel Quality Standards 32413.5 Economic Performance Evaluation of the Biodiesel Production Process 32413.5.1 Fixed Capital Investment Cost 32613.5.2 Working Capital (Operating) Cost 32913.6 Conclusions 330References 331Index 339
Avinash P. Ingle, PhD, is currently working as Ramanujan Fellow at Department of Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, India. His research focus is on nanobiotechnology and nano-biofuel technology and he has over 10 years of research experience in the field of nanotechnology.
1997-2025 DolnySlask.com Agencja Internetowa