1 Theoretical Aspects of Semiconductor Electrochemistry.- I. Introduction.- II. Electronic Energy Levels of Semiconductor and Electrolyte.- 1. Junctions between Two Electronic Conductors.- 2. Semiconductor/Electrolyte Interface.- III. Potential Distribution at Semiconductor/Electrolyte Interface.- 1. Schottky Barrier.- 2. Effect of the Redox Potential on the PotentiaDrop in the Semiconductor at the Semiconductor/Electrolyte Interfaces.- 3. Distribution of Externally Applied Potential at the Semiconductor/Electrolyte Interfaces.- IV. Distribution of Energy States for Ions of Redox System in Solution.- 1. Importance of the Energy Levels of Redox Couples.- 2. Gurney's Model.- 3. Gerischer's Model.- 4. Continuum Solvent Polarization Fluctuation Model.- 5. Validity of the Models.- V. Rate Expressions for Electron Transfer at Illuminated Semiconductor/ Electrolyte Interfaces.- 1. Phenomenological Description.- 2. The Model of Bockris and Uosaki.- 3. Butler's Model—Semiconductor/Electrolyte Interface as a Schottky Barrier.- 4. Competition between Surface Recombination and Charge Transfer.- 5. Effects of Recombination in Space Charge Region.- 6. Effects of Grain Boundary Recombination.- VI. Concluding Remarks.- References.- 2 Photoelectrochemical Devices for Solar Energy Conversion.- I. Semiconductor Electrodes.- 1. Physical Description.- 2. The Mechanism of Cell Operation.- II. Mathematical Description.- 1. Semiconductor.- 2. Electrolyte.- 3. Semiconductor-Electrolyte Interface.- 4. Boundary Conditions.- 5. Counterelectrode.- III. Photoelectrochemical Cell Design.- 1. Choice of Materials.- 2. Solution of the Governing Equations.- 3. The Influence of Cell Design.- IV. Conclusions.- Notation.- References.- 3 Electron Transfer Effects and the Mechanism of the Membrane Potential.- I. Introduction.- II. Modeling Nonenzymatic Systems of Electron Transfer in the Initial Part of the Respiratory Chain of Mitochondria.- 1. Respiratory Chain.- 2. Potentials of the Respiratory Chain Elements.- 3. Ubiquinones in the Respiratory Chain.- 4. Participation of Membrane Lipids in the Functioning of the Respiratory Chain.- 5. Transmembrane Potentials in the Chain NADH-Coenzyme Q-O2.- 6. Participation of FMN in the Oxidation of Membrane Lipids.- 7. Participation of FMN in the Transmembrane Transport of Protons.- 8. Participation of FMN in the Transmembrane Transport of Electrons.- 9. Interaction of FMN with Other Chain Components.- III. Potential Generation on Bilayer Membranes Containing Chlorophyll.- 1. Chlorophyll at the Membrane/Electrolyte Interface.- 2. Redox Potentials of Chlorophyll.- 3. Reactions of Chlorophyll Inserted in the Membrane with the Redox Components in an Aqueous Solution under Illumination.- 4. Transmembrane Potentials in the Chain OX-CHLRED.- IV. Possible Mechanisms of the Motion of Electrons and Protons in the Membrane.- 1. Hypotheses on the Mechanism of Electron Motion in Biological Membranes.- 2. Ion Permeability of Bilayer Membranes in the Iodine/Iodide System Controlled by Redox Reactions at the Interface.- 3. Electron and Proton Transport in Bilayers Containing Chlorophyll and Quinones under Illumination.- 4. Possible Conductance Mechanisms in Bilayers Containing Ubiquinone.- 5. Hypothesis on the Mechanism of Proton Transport in Biological Membranes.- 6. Potentials of Coupling Membranes.- V. Conclusions.- References.- 4 Electrochemistry of Hydrous Oxide Films.- I. Introduction.- II. Formation of Hydrous Oxides.- III. Acid-Base Properties of Oxides.- IV. Structural Aspects of Hydrous Oxides.- V. Transport Processes in Hydrous Oxide Films.- VI. Theoretical Models of the Oxide-Solution Interphase Region.- 1. Classical Models.- 2. Nonclassical Models.- VII. Platinum.- 1. Monolayer Oxidation.- 2. Hydrous Oxide Growth on Platinum.- VIII. Palladium.- IX. Gold.- 1. Monolayer Behavior.- 2. Hydrous Oxide Growth.- X. Iridium.- 1. Monolayer Growth.- 2. Hydrous Oxide Films.- XI. Rhodium.- 1. Hydrous Oxide Growth.- 2. Behavior of Rh/Pt Alloys.- XII. Ruthenium.- XIII. Some Nonnoble Metals.- 1. Iron and Cobalt.- 2. Nickel and Manganese.- 3. Tungsten.- XIV. Conclusion.- Addendum.- References.- 5 Chemistry and Chemical Engineering in the Chlor-Alkali Industry.- I. Introduction.- II. Chemical and Electrochemical Principles Involved in Chlor-Alkali Production.- III. Manufacturing Processes.- 1. Importance of Brine Purification.- 2. Diaphragm Cell Process.- 3. Membrane Cell Process.- 4. Mercury Cell Process.- IV. Electrode Materials and Electrode Processes.- 1. Anodes.- 2. Cathodes.- V. Engineering Aspects in Chlor-Alkali Operations.- 1. Chemical Engineering Aspects of Amalgam Decomposition.- 2. Chemical Engineering Aspects of Porous Diaphragms.- VI. Ion-Exchange Membranes and Membrane Technology.- 1. General Requirements of Membranes for Chlor-Alkali Production.- 2. Properties of Membranes and Their Performance Characteristics.- 3. Engineering Design Aspects of Ion-Exchange Membrane Cell Technology.- 4. Advantages Afforded by Membrane Technology.- 5. State of the Art of Membrane Cell Technology.- Notation.- References.- 6 Phenomena and Effects of Electrolytic Gas Evolution.- I. Introduction.- II. Nucleation, Growth, and Detachment of Bubbles.- 1. Nucleation.- 2. Growth.- 3. Detachment.- 4. Effect of Additives and Operating Parameters.- III. Electrical Effects of Gas Evolution.- 1. Conductivity of Bulk Dispersions.- 2. Electrical Effects of Bubbles on Electrodes.- IV. Mass Transfer at Gas-Evolving Electrodes.- 1. Penetration Theory.- 2. The Hydrodynamic Model.- 3. The Microconvection Model.- 4. Microscopic Investigation.- V. Summary.- Notation.- References.