• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Mesoscopic Physics and Electronics » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Mesoscopic Physics and Electronics

ISBN-13: 9783642719783 / Angielski / Miękka / 2011 / 282 str.

Tsuneya Ando;Yasuhiko Arakawa;Kazuhito Furuya
Mesoscopic Physics and Electronics Tsuneya Ando, Yasuhiko Arakawa, Kazuhito Furuya, Susumu Komiyama, Hisao Nakashima 9783642719783 Springer-Verlag Berlin and Heidelberg GmbH &  - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Mesoscopic Physics and Electronics

ISBN-13: 9783642719783 / Angielski / Miękka / 2011 / 282 str.

Tsuneya Ando;Yasuhiko Arakawa;Kazuhito Furuya
cena 402,53
(netto: 383,36 VAT:  5%)

Najniższa cena z 30 dni: 385,52
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Semiconductor technology has developed considerably during the past several decades. The exponential growth in microelectronic processing power has been achieved by a constant scaling down of integrated cir, cuits. Smaller fea ture sizes result in increased functional density, faster speed, and lower costs. One key ingredient of the LSI technology is the development of the lithog raphy and microfabrication. The current minimum feature size is already as small as 0.2 /tm, beyond the limit imposed by the wavelength of visible light and rapidly approaching fundamental limits. The next generation of devices is highly likely to show unexpected properties due to quantum effects and fluctuations. The device which plays an important role in LSIs is MOSFETs (metal oxide-semiconductor field-effect transistors). In MOSFETs an inversion layer is formed at the interface of silicon and its insulating oxide. The inversion layer provides a unique two-dimensional (2D) system in which the electron concentration is controlled almost freely over a very wide range. Physics of such 2D systems was born in the mid-1960s together with the development of MOSFETs. The integer quantum Hall effect was first discovered in this system."

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Nanotechnology & MEMS
Technology & Engineering > Materials Science - Electronic Materials
Science > Optyka
Wydawca:
Springer-Verlag Berlin and Heidelberg GmbH &
Seria wydawnicza:
NanoScience and Technology
Język:
Angielski
ISBN-13:
9783642719783
Rok wydania:
2011
Dostępne języki:
Angielski
Wydanie:
Softcover Repri
Numer serii:
000084011
Ilość stron:
282
Waga:
0.46 kg
Wymiary:
23.523.5 x 15.5
Oprawa:
Miękka
Wolumenów:
01

1. Introduction — Mesoscopic Systems.- 1.1 Introduction.- 1.2 Length Scales Characterizing Mesoscopic Systems.- 1.2.1 Fermi Wavelength.- 1.2.2 Mean Free Path.- 1.2.3 System Size.- 1.2.4 Thermal Diffusion Length and Thouless Energy.- 1.2.5 Phase Coherence Length.- 1.2.6 Diffusive Regime and Ballistic Regime.- 1.2.7 Quantum Wires, Dots, and Antidots.- 1.2.8 Anderson Localization.- References.- 1.3 Landauer’s Formula.- 1.3.1 Conductance and Transmission Probability.- 1.3.2 Some Applications.- a. Universal Conductance Fluctuations.- b. Conductance Quantization.- References.- 1.4 Fluctuations and Aharonov—Bohm Effect.- 1.4.1 Aharonov—Bohm Effect.- 1.4.2 Universal Conductance Fluctuations.- 1.4.3 Persistent Current.- 1.4.4 Fluctuations of Orbital Susceptibility.- References.- 1.5 Ballistic Electron Transport.- 1.5.1 Quantization of Conductance.- 1.5.2 Interaction Effects on Conductance Quantization.- 1.5.3 Magnetic Focusing.- 1.5.4 Bend Resistance and Transfer Resistance.- 1.5.5 Anomaly in Weak-Field Hall Effect.- References.- 1.6 Coulomb Blockade.- 1.6.1 Introduction.- 1.6.2 Single Electron Tunneling.- 1.6.3 SET Oscillation.- 1.6.4 Tunneling in Superconducting Junctions.- 1.6.5 Coulomb Blockade in Quantum Dots.- 1.6.6 Resonant Transmission and Kondo Effect.- 1.6.7 KTB Transition in Junction Network.- References.- 2. Transport in Quantum Structures.- 2.1 Tomonaga—Luttinger Liquid in Quantum Wires.- 2.1.1 Introduction.- 2.1.2 Tomonaga—Luttinger Liquid.- 2.1.3 Conductance of Finite-Length Quantum Wire.- 2.1.4 Quantized Value of Conductance.- 2.1.5 Mott—Hubbard Insulator.- References.- 2.2 Quantum Wires.- 2.2.1 Magnetoresistance and Boundary-Roughness Scattering.- 2.2.2 One-Dimensional Electron in Slowly Varying Potential.- 2.2.3 Interaction Effects in Quantum Wires.- References.- 2.3 Magnetophonon Resonance in Quantum Wires.- 2.3.1 Introduction.- 2.3.2 Theory.- 2.3.3 Experiments.- References.- 2.4 Quantum Dots and Artificial Atoms.- 2.4.1 Quantum Dots Containing a Few Electrons.- 2.4.2 Atom-like Properties — Shell Filling.- 2.4.3 Atom-like Properties — Spin Effects.- References.- 2.5 Antidot Lattices — Classical and Quantum Chaos.- 2.5.1 Antidot Lattices.- 2.5.2 Commensurability Peaks.- 2.5.3 Aharonov—Bohm Type Oscillation.- 2.5.4 Altshuler—Aronov—Spivak Oscillation.- 2.5.5 Scattering Matrix Formalism.- 2.5.6 Anderson Localization.- References.- 2.6 Electric and Magnetic Lateral Superlattices.- 2.6.1 Lateral Modulation.- 2.6.2 Weiss Oscillation.- 2.6.3 Magnetic Weiss Oscillation.- References.- 2.7 Terahertz Spectroscopy of Nanostructures.- 2.7.1 Introduction.- 2.7.2 Swept-Frequency THz Spectroscopy.- 2.7.3 Electronic States in Single Quantum Wire Structure.- 2.7.4 Blackbody Radiation from Hot Carriers.- 2.7.5 Summary.- References.- 2.8 Wannier—Stark Effect in Transport.- 2.8.1 Wannier—Stark Effect.- 2.8.2 Zener Tunneling and Wannier—Stark States.- 2.8.3 Measurements of Zener Current through a p-i-n Diode.- References.- 3. Quantum Hall Effect.- 3.1 Crossover from Quantum to Classical Regime.- 3.1.1 Bulk Versus Edge Current Picture.- 3.1.2 Edge Transport and Bulk States.- 3.1.3 Voltage Distribution.- 3.1.4 Summary.- References.- 3.2 Edge States and Nonlocal Effects.- 3.2.1 What Is Edge Current?.- 3.2.2 Halperin’s Edge Current.- 3.2.3 Local Current Distribution.- 3.2.4 Büttiker’s Edge Current.- 3.2.5 Nonlocal Resistance.- References.- 3.3 Magnetocapacitance and Edge States.- 3.3.1 Spatial Dispersion of Edge States.- 3.3.2 Edge States Width and Magnetocapacitance.- References.- 4. Electron-Photon Interaction in Nanostructures.- 4.1 Introduction.- References.- 4.2 Theory of Electron-Photon Interaction.- 4.2.1 Electron and Hole Operators in Insulating Solids.- 4.2.2 Effective-Mass Approximation.- 4.2.3 Optical Matrix Elements.- 4.2.4 Quantum States in Nanostructures.- 4.2.5 Quantum Optical Phenomena in Nanostructures.- References.- 4.3 Electron-Photon Interaction in Microcavities.- 4.3.1 Concept of Spontaneous Emission Control.- a. Outline.- b. Spontaneous Emission in a Single Mode.- c. Spontaneous Emission in Free Space.- d. Controlled Spontaneous Emission.- 4.3.2 Experimental Results of Spontaneous Emission Control.- 4.3.3 Cavity-Polariton Effects.- References.- 4.4 Photonic Crystals.- 4.4.1 Photonic Crystals and Spontaneous Emission Control.- 4.4.2 Band Structure of Photonic Crystals.- 4.4.3 Technologies of Photonic Crystals.- References.- 4.5 Microcavity Surface Emitting Lasers.- 4.5.1 Overview.- 4.5.2 Technology for Low Threshold Surface Emitting Lasers.- 4.5.3 New Materials for Surface Emitting Lasers.- References.- 4.6 Toward Lasers of the Next Generation.- 4.6.1 Quantum Dot Lasers.- 4.6.2 Microcavity Quantum Dot Lasers.- References.- 5. Quantum-Effect Devices.- 5.1 Introduction.- References.- 5.2 Electron-Wave Reflection and Resonance Devices.- 5.2.1 Introduction.- 5.2.2 Epitaxial Growth of CoSi2/CaF2 on Si.- 5.2.3 Resonant Tunneling Transistor.- 5.2.4 Observation of Hot Electron Interference.- 5.2.5 Field-Effect Quantum Device.- References.- 5.3 Electron-Wave Coherent Coupling Devices.- 5.3.1 Coherent Coupling in Double Quantum Well.- 5.3.2 Electron Directional Coupler.- 5.3.3 Coherent Oscillation Devices.- 5.3.4 Bloch Oscillation Devices.- 5.3.5 Coherent Oscillations in ac-Field.- References.- 5.4 Electron-Wave Diffraction Devices.- 5.4.1 Electron Wavefront and Its Manipulation.- 5.4.2 Coherence of Electron Wave.- a. Phase Breaking Time Required for Interference.- b. Energy Sharpness Required for Interference.- c. Phase Breaking Time Estimated.- d. Coherence of Electron Wave.- 5.4.3 Diffraction of Hot Electron Wave.- References.- 5.5 Devices Using Ultimate Silicon Technology.- 5.5.1 Future of VLSI Device Technology.- 5.5.2 Silicon Single-Electron Devices.- 5.5.3 Integration of MOS and Single-Electron Devices.- References.- 5.6 Circuit Systems Using Quantum-Effect Devices.- 5.6.1 Information Processing Architectures.- 5.6.2 Binary-Decision-Diagram Circuits.- 5.6.3 Local-Interaction Logic Circuits.- 5.6.4 Analog Computation Systems.- 5.6.5 MOBILE Circuit Systems.- 5.6.6 RHET Circuit Systems.- References.- 6. Formation and Characterization of Quantum Structures.- 6.1 Introduction.- References.- 6.2 Quantum Wires and Dots by MOCVD (I).- 6.2.1 Quantum Wires on Vicinal Surfaces.- 6.2.2 Quantum Dot Formation on Masked Substrates.- References.- 6.3 Quantum Wires and Dots by MOCVD (II).- 6.3.1 Quantum Wires by Selective MOCVD.- 6.3.2 Quantum Dots by Selective MOCVD.- 6.3.3 Quantum Dots in 2D V-Grooves.- 6.3.4 Self-Assembled InGaAs Quantum Dots.- 6.3.5 Use of Spinodal Phase Separation.- References.- 6.4 Quantum Wires on Vicinal GaAs (110) Surfaces.- 6.4.1 Introduction.- 6.4.2 Step Structures.- 6.4.3 AlGaAs Quantum Wires.- 6.4.4 GaAs Quantum Wires.- References.- 6.5 Tilted T-Shaped and (775)B Quantum Wires.- 6.5.1 Introduction.- 6.5.2 GaAs/Al0.3Ga0.7As Tilted T-shaped QWRs.- 6.5.3 Fabrication of GaAs/A10.3Ga0.7As Tilted T-QWRs.- a. Cathodoluminescence Measurements.- b. Calculation of Electron and Hole States in T-QWRs.- 6.5.4 Naturally Formed QWRs on (775)B GaAs Substrates.- a. MBE Growth of GaAs/(GaAs)m(AlAs)n QWRs.- b. Photoluminescence Measurements.- References.- 6.6 SiGe Quantum Structures.- 6.6.1 Band Modification by SiGe/Si Heterostructures.- 6.6.2 SiGe Quantum Wells.- 6.6.3 SiGe Quantum Wires and Dots.- References.

The combination of the lithography technology and the semiconductor heterostructure has produced quantum wires, quantum dots, antidots, quantum point contacts, etc. In such quantum structures, various new phenomena have been observed in the electron transport at low temperatures, such as conductance quantization due to the ballistic electron motion, universal conductance fluctuations due to quantum interference effects, and single-electron tunneling due to the discreteness of the electronic charge. They have provided challenging subjects important from the point of view of fundamental physics, and their possible device applications are actively pursued. Quantum wires and dots are expected also to be able to significantly improve optical devices such as lasers. This book provides general reviews on various subjects of pure physics, device physics, and materials research concerning such quantum structures, starting with a general introduction of physics of mesoscopic systems.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia