ISBN-13: 9783642729805 / Angielski / Miękka / 2014 / 442 str.
ISBN-13: 9783642729805 / Angielski / Miękka / 2014 / 442 str.
Membrane bioenergetics is one of the most rapidly growing areas within physico-chemical biology. Main aspects treated in this book include energy conservation and utilization by membrane-linked molecular mechanisms such as intracellular respiration, photosynthesis, transport phenomena, rotation of bacterial flagella, and the regulation of heat production.
1 Introduction.- 1.1 A “Biology Building” and the Place of Bioenergetics.- 1.2 Essential Definitions.- 1.2.1 Energy-Transducing Membranes.- 1.2.2 Coupling Ions.- 1.2.3 Convertible Energy Currencies of the Living Cell.- 1.3 ??¯H, ?p, ??¯Na and ?s.- 1.4 Adenosine Triphosphate.- 1.5 Membrane Lipids.- 1.6 Lipid Bilayer.- 1.7 Membrane Proteins.- 2 Specific Methods of Membrane Bioenergetics.- 2.1 Membrane Potential Measurement.- 2.1.1 Proteoliposomes.- 2.1.2 Direct ?? Measurement in the Proteoliposome-Collodion Film System.- 2.1.3 ?? Measurement in Intact Cells and Organelles.- 2.1.3.1 Microelectrode Techniques.- 2.1.3.2 Natural Penetrating Ions and Ionophores.- 2.1.3.3 Synthetic Penetrating Ions.- 2.1.3.4 Fluorescing Penetrating Ions: A ?? Monitoring in a Single Cell or Organelle.- 2.1.3.5 The Carotenoid Shift.- 2.2 ?pH Measurement.- 2.3 Measurement of Fast H+ Dissociation-Association.- 3 Primary ??¯H Generators.- 3.1 The Cyclic Photoredox Chain of Purple Bacteria.- 3.1.1 The Main Components and the Principle of Their Function.- 3.1.2 The Reaction Centre Complex.- 3.1.2.1 The Protein Composition.- 3.1.2.2 The Arrangement of Redox Groups.- 3.1.2.3 The Sequence of Electron Transfer Events.- 3.1.2.4 The Mechanism of ??¯H Generation.- 3.1.3 The CoQH2-Cytochrorne c Reductase.- 3.1.4 The Fate of Generated ??¯H.- 3.2 The Non-Cyclic Photoredox Chain of Green Bacteria.- 3.3 The Non-Cyclic Photoredox Chain of Chloroplasts and Cyanobacteria.- 3.3.1 The Principle of Functioning.- 3.3.2 Photosystem I.- 3.3.2.1 The Subunit Composition.- 3.3.2.2 The Electron Transfer Mechanism.- 3.3.2.3 The Mechanism of ??¯H Generation.- 3.3.3 Photosystem II.- 3.3.4 PQH2-Plastocyanin Reductase.- 3.3.5 The Fate of ??¯H Generated by the Chloroplast Photosynthetic Redox Chain.- 3.4 The Respiratory Chain.- 3.4.1 The Principle of Functioning.- 3.4.2 The Sources of Reducing Equivalents.- 3.4.3 NADH-CoQ Reductase.- 3.4.3.1 Protein Composition and Redox Centres.- 3.4.3.2 Proof of ??¯H Generation.- 3.4.3.3 Possible Mechanisms of ??H Generation.- 3.4.4 The CoQH2-Cytochrome c Reductase.- 3.4.4.1 Structural Aspects.- 3.4.4.2 A Functional Model.- 3.4.4.3 Interrelations of CoQ(PQ)-Cytochrome c Reductases in Respiratory and Photosynthetic Redox Chains.- 3.4.5 Cytochrome Oxidase.- 3.4.5.1 Cytochrome c.- 3.4.5.2 The Structure of Cytochrome c Oxidase.- 3.4.5.3 Electron Transfer Path.- 3.4.5.4 The Mechanism of ??¯H Generation.- 3.4.6 A Three-Cycle Version of the Respiratory Chain.- 3.4.7 Shortened Versions of the ??¯H Generating Respiratory Chain.- 3.4.7.1 Reduction of Nitrate.- 3.4.7.2 Reduction of Fumarate.- 3.4.7.3 Methanogenesis.- 3.4.7.4 Oxidations of Substrates of a Positive Redox Potential.- 3.4.8 The Pathways and the Efficiency of Utilization of Respiratory ??¯H. P/O Ratio.- 3.5 Bacteriorhodopsin.- 3.5.1 The Principle of Functioning.- 3.5.2 The Structure of Bacteriorhodopsin.- 3.5.3 Lipids of the Bacteriorhodopsin Sheets.- 3.5.4 Organization of the Bacteriorhodopsin Sheet.- 3.5.5 Bacteriorhodopsin Photocycle.- 3.5.6 Uphill H+ Transport by Bacteriorhodopsin.- 3.5.6.1 Correlation of Photocycle, ?? Generation, H+ Release and Uptake.- 3.5.6.2 A Possible Mechanism of H+ Pumping.- 3.5.7 Bacteriorhodopsin in the Dark. Problem of H+ Leakage.- 3.5.8 Other Retinal Proteins.- 3.5.8.1 Halorhodopsin.- 3.5.8.2 Halobacterial Sensory Rhodopsin and Phoborhodopsin.- 3.5.8.3 Animal Rhodopsin.- 3.6 Primary ??¯H Generators: Overview.- 3.6.1 The Number of ??¯H Generators in the Living Systems of Various Types.- 3.6.2 Interrelations of H+ and ? Transfer in ??¯H Generating Mechanisms.- 4 Secondary ??¯H Generators: H+-ATPases.- 4.1 Definition and Classification.- 4.2 H+-ATPasesof Obligate Anaerobic Bacteria.- 4.3 H+-ATPase of the Plant and Fungal Outer Cell Membrane.- 4.4 H+-ATPase of Tonoplast.- 4.5 Non-Mitochondrial H+-ATPase in Animal Cells.- 4.5.1 H+-ATPase of Chromafin Granules.- 4.5.2 Other H+-ATPase.- 4.5.3 Gastric Mucosa H+/K+ ATPase.- 4.6 Interrelation of Various Functions of H+-ATPase.- 5 ??¯H Consumers.- 5.1 ??¯H-Driven Chemical Work.- 5.1.1 H+-ATP Synthase.- 5.1.1.1 Subunit Composition.- 5.1.1.2 A Three-Dimensional Structure and Arrangement in the Membrane.- 5.1.1.3 ATP Hydrolysis by Isolated F1.- 5.1.1.4 Synthesis of Bound ATP by Isolated Factor F1.- 5.1.1.5 F0-Mediated H+ Conductance.- 5.1.1.6 ??¯H-ATP Interconversion by H+-ATP Synthase in Proteoliposomes.- 5.1.1.7 H+/ATP Stoichiometry.- 5.1.1.8 Possible Mechanisms of Energy Transduction.- 5.1.1.9 Can Localized ??¯H be Involved in ATP Synthesis?.- 5.1.2 H+-Pyrophosphate Synthase.- 5.1.3 H+-Transhydrogenase.- 5.1.3.1 General Characteristics.- 5.1.3.2 The Mechanism of Energy Transduction.- 5.1.3.3 Biological Functions.- 5.1.3.4 Other Systems of the Reverse Transfer of Reducing Equivalents.- 5.2 ??¯H-Driven Osmotic Work.- 5.2.1 Definition and Classification.- 5.2.2 ?? as the Driving Force.- 5.2.3 ApH as the Driving Force.- 5.2.4 Total ??¯H as the Driving Force.- 5.2.5 ??¯H-Driven Transport Cascades.- 5.2.6 Carnitine: An Example of the Transmembrane Group Carrier.- 5.2.7 Some Examples of Proteins Catalyzing ??¯H-Driven Transports.- 5.2.7.1 E.coli Lactose, H+ Symporter.- 5.2.7.2 Mitochondrial ATP/ADP Antiporter.- 5.2.7.3 Mitochondrial H2PO4-, H+ Symporter.- 5.2.8 The Role of ??¯H in the Transport of Marcomolecules.- 5.2.8.1 Transport of Mitochondrial Proteins, Biogenesis of Mitochondria.- 5.2.8.2 Transport of Bacterial Proteins.- 5.2.8.3 The Role of ??¯H in Transmembrane Protein Movement and Arrangement.- 5.2.8.4 Bacterial DNA Transport.- 5.3 ??¯H-Driven Mechanical Work: Bacterial Motility.- 5.3.1 The Structure of the Bacterial Flagellar Motor.- 5.3.2 ??¯H Powers the Flagellar Motor.- 5.3.3 A Possible Mechanism of the H+ Motor.- 5.3.4 ??¯H-Driven Movement of Non-Flagellar Motile Prokaryotes and Intracellular Organelles.- 5.3.5 Motile Eukaryote-Prokaryote Symbionts.- 5.4 ??¯H as an Energy Source for Heat Production.- 5.4.1 Three Ways of Converting Metabolic Energy into Heat.- 5.4.2 Thermoregulatory Activation of Free Respiration in Animals.- 5.4.2.1 Skeletal Muscles.- 5.4.2.2 Brown Fat.- 5.4.2.3 Liver.- 5.4.3 Thermoregulatory Activation of Free Respiration in Plants.- 6 ??¯H Regulation, Transmission and Buffering.- 6.1 Regulation of ??¯H.- 6.1.1 Alternative Functions of Respiration.- 6.1.2 Regulation of the Flows of Reducing Equivalents Between Cytosol and Mitochondria.- 6.1.3 ?? - ApH Interconversion.- 6.1.4 Relation of the ??¯H Control to the Main Regulatory Systems of Eukaryotic Cells.- 6.1.5 ??¯H Control in Bacteria.- 6.2 ??¯H Transmission.- 6.2.1 General Remarks.- 6.2.2 Lateral Transmission of AjiH Produced by Light -Dependent Generators in Halobacteria and Chloroplasts.- 6.2.3 Transcellular Power Transmission Along Cyanobacterial Trichomes.- 6.2.4 The Structure and Functions of Filamentous Mitochondria and Mitochondrial Reticulum.- 6.2.4.1 The Dogma of Small Mitochondria.- 6.2.4.2 Giant Mitochondria and Reticulum mitochondriale.- 6.2.4.3 Filamentous Mitochondria.- 6.2.4.4 Mitochondria as Intracellular Proton Cables: Verification of the Hypothesis.- 6.2.4.5 The Possible Mechanism of Lateral ??¯H Transmission.- 6.2.4.6 Lateral Transport of Ca2 +, Fatty Acids and Oxygen.- 6.2.4.7 Lateral Transport of the Reducing Equivalents.- 6.2.4.8 Cytochrome b5-Mediated Intermembrane Electron Transport.- 6.3 ??¯H Buffering.- 6.3.1 Na+/K+ Gradients as a ??¯H Buffer in Bacteria.- 6.3.2 Other ??¯H — Buffering Systems.- 6.3.3 Carnosine and Anserine as Specialized pH Buffers.- 7 The Sodium World.- 7.1 ??¯Na Generators.- 7.1.1 Na+- Motive Decarboxylases.- 7.1.2 Na+- Motive Respiratory Chain.- 7.1.3 Na+-ATPases.- 7.1.3.1 Bacterial Na+- ATPases.- 7.1.3.2 Animal Na+/K+ ATPase and Na+ ATPase.- 7.2 Utilization of ??¯Na Produced by Primary ??¯Na Generators.- 7.2.1 Osmotic Work.- 7.2.1.1. Na+, Solute — Symports.- 7.2.1.2 Na+ Ions and Regulation of the Cytoplasmic pH.- 7.2.2 Mechanical Work.- 7.2.3 Chemical Work.- 7.2.3.1 The ??¯Na-Driven ATP Synthesis in Anaerobic Bacteria.- 7.2.3.2 Na+-Coupled Respiratory Phosphorylation in Vibrio alginolyticus.- 7.3 How Often is the Na+ Cycle Used by Living Cells?.- 7.4 Probable Evolutionary Relationships of the Protonic and Sodium Worlds.- 7.5 Na+/H+ Antiport in the Animal Cell: H+ as a Secondary Messenger.- 7.6 A General Scheme of Interrelations of Protonic and Sodium Cycles.- 7.7 Membrane-Linked Energy Transductions when Neither H+ nor Na+ is Involved.- 8 Membrane Bioenergetics Studies: An Outlook.- 8.1 Some Prospects for Fundamental Research.- 8.2 Towards Applied Membrane Bioenergetics.- 8.2.1 Medical Aspects.- 8.2.1.1 Respiratory Chain Defects and Related Cases.- 8.2.1.2 Cancer: The Role of Na+/H+Antiporter.- 8.2.1.3 Cancer: Penetrating Cations as Antitumour Agents.- 8.2.1.4 The Action of Antimicrobial Agents, Mediated by Membrane Bioenergetic Systems.- 8.2.2 Two Examples of Possible Technological Application.- 8.2.2.1 ATP Regeneration at the Expense of Light Energy.- 8.2.2.2 The Na+ Cycle in Useful Bacteria.- 9 Membrane Bioenergetics: A Look into History.- 9.1 The First Ideas and Observations. Chemiosmotic Hypothesis.- 9.2 Uncouplers.- 9.3 ??¯H Across Natural Membranes.- 9.4 ??¯H Across Reconstituted Membranes.- 9.5 ATP Formation Supported by an Artifically Imposed ??¯H.- 9.6 Bacteriorhodopsin and Chimerical Proteoliposomes.- 9.7 The Latest History.- 9.8 Membrane Bioenergeticists and Their Outstanding Predecessors.- 10 References.- 11 Subject Index.
1997-2024 DolnySlask.com Agencja Internetowa