Preface xiiiBiography xvi1 Introduction 11.1 Nanoparticle-Reinforced Composites 21.2 Nanoplatelet-Reinforced Composites 31.3 Nanofiber-Reinforced Composites 31.4 Carbon Nanotube-Reinforced Composites 41.5 Nanomaterials 51.5.1 Woven Fabric 81.5.2 Fibers 121.5.3 Types of Fibers 151.5.4 Boron Fiber 161.5.5 Carbon Fiber 171.5.5.1 Fabrication of C Fiber Using PAN 171.5.5.2 Fabrication of C Fiber Using Pitch 191.5.6 Glass Fiber 201.5.7 Aramid (Kevlar) Fiber 221.5.8 Matrices 241.5.8.1 Polymer Matrix Composite 241.5.8.2 Metal Matrix Composites 251.5.8.3 Ceramic Matrix Composites 251.6 Manufacturing Methods 261.6.1 Polymer Matrix Composites 261.6.1.1 Thermoset Matrix Composites 261.6.1.2 Thermoplastic Matrix Composites 361.6.2 Metal-Matrix Composites 381.6.2.1 Liquid-State Processes 381.6.2.2 Solid-State Processes 431.6.2.3 In Situ Processes 471.6.3 Ceramic Matrix Composites 471.6.3.1 Cold Pressing and Sintering 471.6.3.2 Hot Pressing 481.6.3.3 Reaction Bonding 491.6.3.4 Infiltration 501.6.3.5 Polymer Infiltration and Pyrolysis 51References 542 Literature Review of Different Modeling Methods 552.1 Material Development 552.2 Nanostructured Materials 562.3 Methods of Modeling 582.3.1 Atomistic, Molecular Methods 592.3.2 Coarse Grain Methods 602.3.3 Continuum Methods 622.3.4 Effective Continuum Approach 632.4 Literature Review of Different Methods of Modeling 642.4.1 Micromechanics/FEM 642.4.2 Effective Continuum 722.4.3 Molecular Dynamics 732.5 Conclusion 76References 773 Modeling of Nanocomposites 833.1 Notation 843.2 Average Properties 853.3 Theoretical Models 863.3.1 Cox Shear Lag Model 873.3.2 Eshelby's Equivalent Inclusion 913.3.3 Dilute Eshelby's Model 933.3.4 Mori-Tanaka Model 943.3.5 Chow Model 983.3.6 Modified Halpin-Tsai or Finegan model 993.3.7 Hashin-Shtrikman Model 1043.3.8 Lielens Model 1063.3.9 Self-Consistent Model 1063.3.10 Finite Element Modeling (FEM) 1083.3.10.1 Introduction 1083.3.10.2 Representative Volume Elements (RVEs) 1093.3.10.3 Modeling for E11 1123.3.10.4 Modeling for E22 1173.3.10.5 Modeling for G23 1233.3.10.6 Modeling for G31 1273.3.10.7 Theoritical Formulation 1323.3.10.8 Comparison of Results 1323.4 Fast Fourier Transform Numerical Homogenization Methods 1433.4.1 FFT-based Homogenization Method 1453.4.2 Implementation of FFT-based Homogenization Method 1483.5 Conclusion 149References 1504 Prediction of Mechanical Properties 1554.1 Storage Moduli 1554.1.1 Longitudinal Storage Modulus (E'11) 1554.1.1.1 Variation of E'11 with Vf 1554.1.1.2 Variation of E'11 with l/d 1574.1.2 Transverse Storage Modulus (E'22) 1594.1.2.1 Variation of E'22 with Vf 1594.1.2.2 Variation of E'22 with l/d 1614.1.3 Transverse Shear Storage Modulus (G'23) 1634.1.3.1 Variation of G'23 with Vf 1634.1.3.2 Variation of G'23 with l/d 1644.1.4 Longitudinal Shear Storage Modulus (G'12) 1664.1.4.1 Variation of G'12 with Vf 1664.1.4.2 Variation of G'12 with l/d 1684.2 Loss Factors 1704.2.1 Longitudinal Loss Factor (eta11) 1714.2.1.1 Variation of eta11 with Vf 1714.2.1.2 Variation of eta11 with l/d 1724.2.2 Transverse Loss Factor (eta22) 1744.2.2.1 Variation of eta22 with Vf 1744.2.2.2 Variation of eta22 with l/d 1754.2.3 Transverse Shear Loss Factor (eta23) 1784.2.3.1 Variation of eta23 with Vf 1784.2.3.2 Variation of eta23 with l/d 1814.2.4 Longitudinal Shear Loss Factor (eta12) 1834.2.4.1 Variation of eta12 with Vf 1834.2.4.2 Variation of eta12 with l/d 1844.3 Conclusions 187Reference 1895 Experimental Work 1915.1 Materials 1915.2 Principles of DMA - Forced Nonresonance Technique 1925.2.1 Terms and Definitions 1925.2.2 Choice of Sample Geometry 1935.2.3 Geometry Choice Guidelines 1955.3 Experimental Procedure for Dual Cantilever Mode 1955.4 Theoretical Formulations/Modeling 1975.5 Results and Discussion 1985.6 Conclusions 202References 2036 Molecular Dynamics Simulation 2056.1 Molecular Dynamics 2056.2 Monte Carlo Simulation 2066.3 Brownian Dynamics 2076.4 Dissipative Particle Dynamics 2076.5 Lattice Boltzmann Method 2086.6 Basic Concepts 2086.6.1 Force Field 2086.6.2 Potentials 2146.6.2.1 Tersoff Model 2166.6.2.2 Brenner Model 2166.6.2.3 Morse Potential 2176.6.2.4 Lennard-Jones Potential 2186.6.3 Ensemble 2196.6.4 Thermostat 2206.6.4.1 Andersen's Method 2216.6.4.2 Berendsen Thermostat 2216.6.4.3 Nosé-Hoover Thermostat 2226.6.5 Boundary Conditions 2246.6.5.1 Periodic Boundary Condition 2246.6.5.2 Lees-Edwards Boundary Condition 2256.7 Molecular Dynamics Methodology 2256.7.1 Initial Positions 2286.7.1.1 Spherical Systems 2286.7.1.2 Nonspherical Systems 2306.7.2 Initial Velocities 2336.7.2.1 Spherical Systems 2336.7.2.2 Nonspherical Systems 2346.8 Molecular Potential Energy Surface 235References 2377 Molecular Dynamics Simulation-Case Studies 2397.1 Carbon Nanofiber-Reinforced Polymer Composites 2397.1.1 Molecular Modeling of CNF and CNF/PP Composites 2427.1.2 Modeling of CNFs 2437.1.3 Modeling of CNF-PP Composites 2437.1.4 Damping in CNF-PP Composites 2477.1.5 Results and Discussion 2487.1.5.1 Elastic Moduli 2487.1.5.2 Damping 2537.1.6 Conclusions 2567.2 Silica Nanoparticle/Hydroxyapatite Fiber Reinforced bis-GMA/TEGDMA Composites 2567.2.1 Molecular Dynamics Methodology 2597.2.1.1 Molecular Models of Unfilled Polymers 2597.2.1.2 Molecular Models of Filled Polymer Composites 2597.2.1.3 MD Methodology 2597.2.2 Results and Discussion 2637.2.2.1 Chain Configuration 2637.2.2.2 Effect of Hydrogen Bonding 2637.2.2.3 Prediction of Mechanical Properties 2677.2.2.4 Coefficient of Diffusion 2697.2.3 Conclusion 272References 2748 Coupling of Scales-Continuum Mechanics and Molecular Dynamics 2798.1 Introduction 2798.2 Structural Mechanics Review 2808.3 Carbon Nanotubes: Structural Mechanics Approach 2828.4 Stiffness Parameters and Force Field Constants: Linkage 2858.5 Young's Modulus of Graphene and CNT 2868.5.1 Modeling of Polymer Matrix 2928.6 Modeling of CNT/Polymer Interface 2928.7 Elastic Buckling of CNT/Polymer Composite 2948.8 Conclusions 296References 2969 Conclusions and Future Scope 299Index 301
SUMIT SHARMA is Assistant Professor at Dr B R Ambedkar National Institute of Technology in Jalandhar, India. He has published thirty scholarly articles and a book related to simulations of composite materials. His research interests include viscoelasticity, fracture mechanics, phase transformations, and solid mechanics.