ISBN-13: 9781475785258 / Angielski / Miękka / 2013 / 508 str.
ISBN-13: 9781475785258 / Angielski / Miękka / 2013 / 508 str.
1.1 Mass Transportation Problems in Probability Theory This chapter provides a basic introduction to mass transportation pr- lems (MTPs). We introduce some of the methods used in studying MTPs: dualrepresentations, explicitsolutions, topologicalproperties.Weshallalso discuss some applications of MTPs. The following measure-theoretic problems are well-known continuous casesofMKPs(see, forexample, Dudley(1976), LevinandMilyutin(1979), R] uschendorf (1979, 1981), Kemperman (1983), Kellerer (1984), Rachev (1984b, 1991c) and the references therein). TheMonge Kantorovichmasstransportationproblem(MKP): Given?xed probability measuresP andP on a separable metric spaceS and a mea- 1 2 surable cost functionc on the Cartesian productSxS, ?nd u (P, P ) = inf c(x, y)P(dx, dy), (1.1.1) c 1 2 wherethein?mumistakenoverallprobabilitymeasuresP onSxS having projections ?P = P, i=1,2. (1.1.2) i i 2 1. Introduction The Kantorovich Rubinstein transshipment problem (KRP): GivenP 1 andP onS ?nd 2 ? u (P, P ) = inf c(x, y)Q(dx, dy), (1.1.3) 1 2 c where the in?mum is taken over all ?nite measuresQ onSxS having the marginal di?erence ?Q Q = P ?P; (1.1.4) 1 2 1 2 that is, Q(AxS)?Q(SxA)=P (A)?P (A) for all Borel setsA?S."