ISBN-13: 9783031383540 / Angielski / Twarda / 2023
ISBN-13: 9783031383540 / Angielski / Twarda / 2023
Instrumental Methods of Chemical Analysis
V.K. Ahluwalia
Visiting Professor
Dr. B.R. Ambedkar Center for Biomedical Research,University of Delhi
Ane Books Pvt. Ltd.
New Delhi ♦ Chennai
Contents
Part I: Introduction
1.
Introduction
to Instrumental Methods of Chemical Analysis
1
1.1
Chemical Analysis
3
1.2
Instrumental Methods—Their Classification
3
1.3
Selection of the Instrumental Method
5
1.4
Application of Instrumental Methods/ Techniques
5
1.4.1 Chromatographic Methods
5
1.4.2 Thermal Methods
5
1.4.3 Electrochemical Methods
5
1.4.4 Instrumental Methods for the Determination of the
structure of Organic Compounds
6
1.4.5 Instrumental Methods of Analysis of Inorganic
Compounds
8
1.4.6 Miscellaneous Instrumental Methods
9
Part II: Chromatographic Methods
2.
Chromatography
13
2.1
Introduction
13
2.2
Principle of Chromatographic Separation
13
2.3
Types of Chromatography
14
2.3.1 Partition Chromatography
14
2.3.2 Adsorption Chromatography
15
2.3.3 Exclusion Chromatography
15
2.3.4 Ion-exchange Chromatography
15
Exercises 16
3.
Paper Chromatography17
3.1
Circular (or Radical) Paper Chromatography17
3.2
Ascending Paper Chromatography
20
3.3
Descending Paper Chromatography
20
3.4
Paper Chromatographic Ceparations
21
3.4.1 Separation and Identification of Group 1 Cations
(Pb', Ag*,
3.4.2 Separation and Identification of Cations of Group II
21
(Hg2±, Cd2+ and Bi3±)
22
viii
Instrumental Methods of Chemical Analysis
3.4.3 Separation and Identification of Cu" and Cd"
Using Paper Chromatography 22
3.4.4 Separation and Identification of Amino Acids byDescending Paper Chromatography 23
3.4.5 Separation and Identification of Monosaccharides
by Descending Paper Chromatography 24
Exercises 25
4.
Thin Layer Chromatography
27
4.1
Principle of TLC Separation27
4.2
Preparation of TLC Plates27
4.3
Procedure for TLC29
4.4
Preparative TLC31
4.5
Two-dimensional TLC32
4.6
High-Performance Thin-Layer Chromatography (HPTLC)33
4.7
Reversed Phase Partition Thin Layer Chromatography34
4.8
Thin Layer Chromatographic Separations34
4.8.1 Separation and Identification of Amino Acids by TLC
34
4.8.2 Separation and Identification of Carbohydrates by TLC
35
4.8.3 Separation and Identification of Ketones
35
Exercises
36
5.
Column Chromatography
37
5.1
Principle of Column Chromatography
38
5.2
Procedure of Column Chromatography
38
5.3
High Performance Column Chromatography
40
5.4
Dry Column Chromatography
41
5.5
Chiral Chromatography
42
5.6
Columns Chromatographic Separations
43
5.6.1 Separation and Identification of a Mixture of
o-Nitroaniline and p-Nitroaniline by Column
Chromatography
43
5.6.2 Separation and Identification of a Mixture of cis- and
trans-Azobenzene by Column Chromatography
43
5.6.3 Purification of Anthracene by Column Chromatography
44
Exercises44
6.
Gas Chromatography
45
6.1
Introduction45
6.2
Principle of Gas Chromatography45
Contents
6.36.4
6.5
6.6
The Chromatographic Instrument
6.3.1 Carrier Gas
6.3.2 Sample Injection System
6.3.3 The Column
6.3.4 The Detector
6.3.5 Temperature Programming
Preparative Gas Chromatography
Applications of Gas Chromatography
Gas Chromatographic Separations
ix
47
47
47
4850
50
50
51
53
6.6.1 Estimation of Sucrose
53
6.6.2 Estimation of Aluminium in Water
54
Exercises 54
7.
High Performance Liquid Chromatography (HPLC)
55
7.1
Introduction
55
7.2
Principle of HPLC
55
7.3
HPLC Instruments
56
7.3.1 Mobile Phase
56
7.3.2 Sample Injection Systems
56
7.3.3 Column
56
7.3.4 Detector
57
Exercises 57
8.
Gel Chromatography
598.1
Introduction
598.2
Principle of Gel Chromatography
598.3
Types of Gels
598.4
Applications of Gel Chromatography
61
Exercises 61
9.
Ion Exchange Chromatography
63
9.1
Introduction
63
9.2
Different Types of Resins
64
9.2.1 Anion Exchange Resins
64
9.2.2 Cation Exchange Resins
65
9.3
Principle of Ion Chromatography
65
9.4
Procedure for Ion Chromatography
66
9.5
Applications of Ion Chromatography
67
9.5.1 Determination of Anions
67
9.5.2 Separation of Lit, Na' and K± Ions
68
9.5.3 Removal of Phosphate (Interferening Radical)
68
x Instrumental Methods of Chemical Analysis
9.5.4 Softening of Hard Water 68
9.5.5 Demineralised Water 69
9.5.6 Separation of Amino Acids 70
Exercises 71
10. Electro Chromatography 73
10.1 Introduction 73
10.2 Paper Electrophoresis 73
10.3 Gel Electrophoresis 74
10.4 Capillary Electrophoresis (CE) 75
Exercises 77Part III: Thermal Methods of Chemical Analysis
11. Thermogravimetric Analysis 81
11.1 Introduction 81
11.2 Thermogravimetric Analysis 8211.3 Thermogravimetric Analyser 82
11.3.1 Measurement of Weight 82
11.3.2 Heating Arrangement and Temperature Measurement 83
11.3.3 Sample Holders 83
11.3.4 Atmospheric Control 83
11.3.5 Recorders 83
11.4 Thermogravimetric Curve (TG curve) 84
11.4.1 Factors Affecting Thermogravimetric Curves 8511.5 Applications of TGA 86
11.5.1 Determination of Thermal Stability of Salts 86
11.5.2 Analysis of Mixtures 87
11.5.3 Determination of Curie Temperature 87
11.5.4 Organic Compounds 88Exercises 89
12. Differential Thermal Analysis 91
12.1 Introduction 91
12.2 Differential Thermal Analyser 92
12.3 Factors Affecting DTA 93
12.4 Applications of DTA 94
12.4.1 Heat of Reaction 94
12.4.2 Specific Heat 94
12.4.3 Identification of Substances 95
12.4.4 Identification of the Products of a Reaction 9512.4.5 Purity of the Compound 95
12.4.6 Quantitative Analysis 95
12.5 Miscellaneous Applications 95 Exercises 96
13. Thermometric Titrations
xi97
13.1
Introduction
97
13.2
Thermometric Titration Apparatus
98
13.3
Titrimetric Procedure
99
13.4
Applications
99
13.4.1 Neutralisation Titrations
99
13.4.2 Precipitation Titrations
100
13.4.3 Complexation Titrations
100
13.4.4 Redox Titrations
101
Exercises 101
14.
Miscellaneous Thermal Methods
103
14.1
Derivative Thermogravimetric Analysis (DTA)
103
14.2
Thermobarography
103
14.3
Differential Scanning Calorimetry (DSC)
103
14.4
Thermomechanical Analysis (TMA)
104
14.5
Electric Thermal Analysis (ETA)
105
Exercises 105
Part-IV: Electrochemical Method
15.
Coulometric
Method Of Analysis
10915.1
Introduction
10915.2
Coulometer
11015.3
Coulometric Analysis
111
15.3.1 Constant Current Coulometric Analysis
111
15.3.2 Controlled Potential Coulometric Analysis
112
15.4
Coulometric Titrations
112
15.4.1 Principles of Coulometric Titrations
112
15.4.2 Advantages of Coulometric Titrations
112
15.4.3 Errors in Coulometric Titrations
112
15.4
Nature of Electrodes Used in Coulometric Titrations
113
15.5
Applications of Coulometric Titrations
113
Exercises 115
16.
Polarography
16.1
Introduction
11716.2
The Instrument
11716.3
Factors Affecting Current-voltage Curves
11916.4
Half Wave Potentials
12116.5
Applications of Polarography
122
Exercises 123
xii Instrumental Methods of Chemical Analysis
17. Amperometric Titrations 125
17.1 Introduction 125
17.2 Apparatus for Amperometric Titrations 125
17.3 End point in Amperometric Titrations 128
17.4 Advantages of Amperometric Titrations 12917.5 Disadvantages of Amperometric Titrations 130
17.6 Applications of Amperometric Titrations 130
17.7 Amperometric Titrations with Two Indicator Electrodes 132 Exercises 133
18. Potentiometric Titrations 135
18.1 Introduction 135
18.2 Principle of Potentiometric Titration 136
18.3 Indicator Electrode 13718.4 Reference Electrodes 138
18.5 Apparatus for Potentiometric Titrations 139
18.6 Applications of Potentiometric Titrations 140
18.6.1 Neutralisation Titrations 140
18.6.2 Oxidation-Reduction Titrations 141
18.6.3 Precipitation Titrations 143
18.6.4 Complexometric Titrations 144
18.7 Differential Titrations 144
18.8 Automatic Titrations 145
18.9 Advantages of Potentiometric Titrations 145 Exercises 146
19. Conductometric Titrations 14719.1 Introduction 147
19.2 Terms Used in Conductometric Titrations 147
19.3 Applications of Conductometric Titrations 14919.4 Conductometric Titrations 150
19.4.1 Conductometric Titrations of Acids-alkalies 150
19.4.2 Conductometric Precipitation Reactions 153
19.5 Advantages of Conductometric Titrations 154 Exercises 15420. Spectrophotometric Titrations 155
20.1 Introduction 155
20.2 Procedure of Titration 156
20.3 Applications 157 Exercises 158
Contents
21. High Frequency Titrations
xiii
159
21.1
Introduction
159
21.2
Instrument
159
21.3
High Frequency Titrations
161
21.4
Applications of High Frequency Methods
162
21.4.1 Acid-base Titrations
162
21.4.2 Measurement of Dielectric Constant
162
21.4.3 Analysis of Binary Mixtures
164
21.4.4 Complexometric Titrations
164
21.5
Advantages of High Frequency Titrations
164
Exercises 164
22.
pH Measurements
167
22.1
Introduction
167
22.2
Determination of pH of a Solution by Potentiometry
169
22.2.1 Determination of pH Using Hydrogen Electrode
169
22.2.2 Determination of pH Using Glass Electrode
171
22.2.3 Determination of pH Using Quinhydrone Electrode
173
22.3
Determination of pH Using a pH Meter
175
22.4
Determination of pH Using pH Indicators
176
Exercises 177
23.
Calorimetry
179
23.1
Introduction179
23.2
Principle of Calorimeter181
23.3
Procedure for the Estimation of Cue' in a Unknown Solution181
Exercises 184
Part V: Instrumental Method for Structure Determination of Organic Compounds
24. Infrared Spectroscopy 187
24.1 Introduction 187
24.2 Basic Theory 189
24.3 Instrumentation 189
24.4 Fourier Transform Infrared (FTIR) Spectrometer 190
24.4.1 Principle of Interferometry 191
24.5 Mode of Vibrations 19124.5.1 Number of Fundamental Vibrations, Selection Rules 192
24.6 Recording of IR Spectra 193 24.7 Major Bands in the IR Spectra of Different Types of Organic
Compounds 197
xiv Instrumental Methods of Chemical Analysis
24.8 Interpretation of the Infrared Spectra 205
24.9 Applications of Infrared Spectroscopy 219
24.10 IR spectras of Some Typical Compounds 22224.11 Non-dispersive Infrared Spectroscopy 230
Exercises 230
25. Ultraviolet Spectroscopy 241
25.1 Introduction 241
25.2 Terms used in UV Spectroscopy 243
25.3 Electronic Transitions 24425.4 Ultraviolet Spectrometer 246
25.5 Characteristic Absorption of Organic Compounds 248
25.6 Interpretation of UV Spectra 269
25.7 Applications of UV Spectroscopy 269
Exercises 27326. Nuclear Magnetic Resonance (NMR) Spectroscopy 279
26.1 Proton Nuclear Magnetic Resonance ('HNMR or PMR) 279 Spectroscopy
26.1.1 Introduction 279
26.1.2 The NMR Spectrometer 281
26.1.3 Interpretation of the 'HNMR Spectra 28426.1.4 Chemical Shifts of Different Types of Protons 293
26.1.5 The Splitting of Signals 299
26.1.6 Final Interpreting an 'HNMR Spectra 311
26.1.7 Interpretation of the 'HNMR Spectra of Some
Simple Molecules 314
26.1.8 Predicting the 'HNMR Spectrum of an Organic 316 Compound
26.1.9 Complicated 'HNMR Spectra 31726.1.10 Applications of Proton Magnetic Resonance 325 Spectroscopy
26.2 Carbon-13 NMR (13C NMR) Spectroscopy 329
26.2.1 Introduction 32926.2.2 Interpretation of 13C NMR Spectra 330
26.2.3 Chemical Shift 332
26.2.4 Identification of Peaks in 13C NMR Spectra on the
Basis of Hybridization of Each Carbon Atom 335
26.2.5 Two-dimensional (2d) 13C NMR Spectroscopy 338
26.2.6 Applications of 13C Spectra 338Contents
27. Electron Spin Resonance (ESR) Spectroscopy
xv
353
27.1
Introduction
35327.2
Instrument
35527.3
Recording an ESR spectra
35727.4
Hyperfine Splitting
359
27.4.1 ESR Spectra of Hydrogen Atom
359
27.4.2 ESR Spectra of Deuterium
360
27.4.3 ESR Spectra of Methyl Radical
362
27.5
Determination of g—value
362
27.6
Line width
363
27.7
Hyperfine Structure in ESR Spectra
363
27.8
Applications of ESR Spectroscopy
366
27.9
Electron Nuclear Double Resonance (ENDOR)
369
27.10 Electron Double Resonance (ELDOR)
369
Exercise s 369
28.
Mass Spectrometry
373
28.1
Introduction
373
28.2
The Mass Spectrometer
374
28.3
The Mass Spectrum
376
28.4
Determination of Molecular Formula
378
28.4.1 Molecular Formula from Isotopic Peaks
378
28.4.2 Molecular Formula Using High-resolution Mass
Spectrometry
38128.5
Recognitation of the Molecular Ion Peak
38228.6
Use of the Molecular Formula
38428.7
Fragmentation
385
28.7.1 Fragmentation by Cleavage of a C—C Single Bond
385
28.7.2 Fragmentation by Cleavage of More than One Bond
388
28.7.3 Rearrangements
390
28.8
Mass Spectra of Some Typical Classes of Compounds
391
28.8.1 Saturated Hydrocarbons
391
28.8.2 Unsaturated Hydrocarbons
393
28.8.3 Alcohols
395
28.8.4 Phenols
398
28.8.5 Ethers
399
28.8.6 Ketones
400
28.8.7 Aldehydes
403
28.8.8 Carboxylic Acids
404
Instrumental Methods of Chemical Analysis
28.8.9 Carboxylic Esters
405
28.8.10 Lactones
407
28.8.11 Amines
408
28.8.12 Amides
409
28.8.13 Nitro Compounds
410
28.8.14 Nitrites
411
28.8.15 Nitrates
411
28.8.16 Sulfur Containing Compounds
411
28.8.17 Compounds Containing Halogens
412
28.8.18 Heterocyclic Compounds
414
28.9
Gas Chromatography-Mass Spectrometry
417
28.9.1 Applications of Gas Chromatography-Mass
417
Spectrometry
28.10 Negative Ion Mass Spectrometry
417
28.10.1 Negative Ion Formation
418
28.10.2 Reactions Observed During Negative Ion Chemical
Ionization
418
28.10.3 Fragment Patterns of Negative Ions
419
28.10.4 Applications of Negative Ion Mass Spectrometry
42328.11 Applications of Mass Spectrometry
425
28.11.1 Determination of Structure of Organic Compounds
425
28.11.2 Determination of Molecular Weight and Molecular
Formula
425
28.11.3 Miscellaneous Applications
426
28.12
Solved Problems
426
Exercises 426
29.
Polarimetry
433
29.1
Introduction
433
29.2
Plane Polarized Light
433
29.3
Optical Activity
434
29.4
Kinds of Molecules Analysed by Polarimetry
435
29.5
Theoretical Considerations
435
29.6
Polarimeter
437
29.7
Applications of Polarimetry
437
Exercises 441
30. Optical Rotatory Dispersion and Circular Dichroism
xvii443
30.1
Introduction
443
30.2
Circular Birefringence
445
30.3
Circular Dichroism
445
30.4
Cotton Effect
446
30.5
Optical Rotatory Dispersion (ORD)
446
30.5.1 Types of Optical Rotatory Dispresion Curves
446
30.6
Comparison of ORD and CD Curves
448
30.7
Axial Haloketone Rule
448
30.8
The Octant Rule
449
30.9
Instrumentation for ORD and CD Measurements
451
30.9.1 Instruments for ORD Measurements
451
30.9.2 Instrumentation for CD Measurements
452
30.10 Applications of Optical Rotatory Dispersion and Circular Dichroism
453
Exercises456
Part-VI: Instrumental Methods for Analysis of Inorganic Compounds
31.
Microwave Spectroscopy
459
31.1
Introduction
459
31.2
Differences between Microwave Spectroscopy and IR Spectroscopy
460
31.3
Theory of Microwave Spectroscopy
460
31.4
Diatomic Molecule as a Rigid Rotator
460
31.5
Selection Rules for Rotational Spectra
463
31.6
Instrument for Microwave Spectroscopy
465
31.7
Aplications
467
32.
Exercises470Nuclear Quadrupole Resonance (NQR) Spectroscopy
473
32.1
Introduction
47332.2
Theory
47332.3
NQR Instrument
47532.4
Applications of NQR
47633.
Exercises478
Raman Spectroscopy
479
33.1
Introduction
479
35.2
Principle of Raman Spectroscopy
479
33.3
Characteristics of Raman Lines
481
33.4
Differences between Raman Spectra and Infrared Spectra
481
33.5 Polarizability 482
33.6 Explanation of Mechanism of Raman Effect 482
33.7 Raman Spectrometer 485
33.8 Intensity of Raman Peaks 486
33.9 Applications of Raman Spectroscopy 486
Exercises 49134. Mossbauer Spectroscopy 493
34.4 Nuclides and their Characteristics 496
34.5 Applications Mossbauer Spectroscopy 496
Exercises 500
35. Emission Spectroscopy 503
35.1 Introduction 503
35.2 Types of Spectra 503
35.3 Comparison of Emission Spectroscopy with Flame Photometry 504
35.4 Instrumentation 505
35.5 Applications of Emission Spectroscopy 510
Exercises 512Part VII: Miscellaneous Instrumental Methods
36. Atomic Absorption Spectroscopy (AAS) 515
36.1 Introduction 515
36.2 The Instrument and Procedure of Estimation 516
36.3 Determination of the Concentration of Element in ppm 519
36.4 Double Beam Atomic Absorption Spectrometer 520
36.5 Atomic Absorption Spectroscopy Versus Flame Emission
Sprectroscopy 520
36.6 Interference 521
36.6.1 Chemical Interference 521
36.6.2 Solvent Interference 521
36.7 Advantages of Atomic Absorption Spectroscopy 521
36.8 Applications of Atomic Absorption Spectroscopy 522
36.9 Flameless Atomic Absorption Method 526
Exercises 526
37. Flame Photometry 527
37.1 Introduction 527 37.2 Principle of Flame Photometry 52737.3 Components of a Flame Photometer 529
Contents
37.4
Selection of Appropriate Solvent for Dissolving the Salt in
xix
Flame Photometry
533
37.5
Instrument
533
37.5.1 Simple Flame Photometer
533
37.5.2 Internal Standard Flame Photometer
534
37.6
Techniques of Analysis
535
37.6.1 Analysis Involving Calibration Curves
535
37.6.2 Analysis Involving Internal Standard
535
37.6.3 Analysis Involving Addition of Standard
535
37.7
Preparation of Standard Solutions
535
37.8
Interferences in Flame Photometry
536
37.9
Factors Which Affect Intensity of Emitted Radiation
537
37.10
Limitations of Flame Photometry
538
37.11
Applications of Flame Photometry
538
Exercises 539
38.
Fluorimetry and Phosphorimetry
541
38.1
Introduction
541
38.2
Fluorescence and Absorption Method
542
38.3
Fluoremetry and Phosphorimetry
542
38.4
Theory
542
38.4.1 Relation between Fluorescence Intensity and
Concentration
54438.5
Types of Transitions in Fluorescence
54438.6
Instrumentation
545
38.6.1 Instrument for Fluorimetric Analysis
545
38.6.2 Instrument for Phosphorimetric Analysis
54738.7
Applications of Fluorimetry
54838.8
Applications of Phosphorimetry
55138.9
Comparison of Fluorimetry and Phosphorimetry
551
Exercises 552
39.
Nephelometric and Turbidimetric Techniques
553
39.1
Introduction
553
39.2
Turbidimetry and Colorimetry
554
39.3
Nephelometry and Fluorimetry
554
39.4
Choice between Nephelometry and Turbidimetry
554
39.5
Basic Principles of Nephelometry and Turbidimetry
554
39.6 Instrumentation 556
39.6.1 Turbidimeters 558
39.6.2 Nephelometers 558
39.7 Applications 559 Exercises 562
40. Refractometry and Interferometry 563
40.1 Introduction 563
40.2 Specific Rotation 564
40.3 Molar Refraction 564
40.4 Determination of Refractive index 566
40.5 Applications of Refractometry 56740.6 Optical Exaltation 568
40.7 Interferometry 569
40.7.1 Applications of Interferometer 571
Exercises 571
41. X-ray Methods 573
41.1 Introduction 573 41.2 Theoretical Consideration 57341.3 Instrumentation 576
41.4 Instrument for x-ray Absorption 579
41.5 Instrument for x-ray Diffraction 580
41.5.1 Laue Method 580
41.5.2 Rotating Crystal Method 581
41.6 Application of x-ray Diffraction 58141.7 X-ray Fluorescence 585
41.7.1 Instrumentation 586
41.7.2 Applications of x-ray Fluorescence Spectroscopy 586
Exercises 587
1997-2024 DolnySlask.com Agencja Internetowa