Foreword ixPierre DROSSARTPreface xiChapter 1. IR Spectra in Space Observation 11.1. Introduction 11.2. Fourier transform spectroscopy 71.2.1. Principle of IR spectrum acquisition by interferometry 91.2.2. Design and operation of a long path difference interferometer 111.2.3. FTIR absorption spectroscopy in matrices 141.2.4. LIF and DR IR-IR spectroscopies in matrices 211.3. Resonant cavity laser absorption spectroscopy 261.3.1. Intracavity laser absorption spectroscopy (ICLAS) 301.3.2. Cavity ring-down spectroscopy (CRDS) 331.3.3. Frequency comb spectroscopy (FCS) 381.4. Spectroscopy for space observation 431.4.1. Spectroscopic ellipsometry for space observation 431.4.2. Space-borne spectroscopy 561.4.3. LIDAR spectroscopy for space observation 601.5. Conclusion 641.6. Appendices 641.6.1. Appendix 1: Measurement distortion and data processing 64Chapter 2. Interactions Between a Molecule and Its Solid Environment 712.1. Introduction 722.2. Active molecule - solid environment system 742.2.1. Binary interaction energy 742.2.2. Dispersion-repulsion contribution 762.2.3. Electrostatic contribution 762.2.4. Induction contribution 782.3. Two-center expansion of the term 792.4. Conclusion 812.5. Appendices 822.5.1. Appendix 1: Multipole moments and dipole polarizability of a molecule with respect to its fixed reference frame 822.5.2. Appendix 2: Elements of the rotational matrix 822.5.3. Appendix 3: Clebsch-Gordan coefficients 84Chapter 3. Nanocage of Rare Gas Matrix 873.1. Introduction 873.2. Rare gases in solid state 883.3. Molecule inclusion and deformation of the doped crystal 903.3.1. Molecule inclusion 903.3.2. Deformation of the doped crystal 923.3.3. NH3 in an argon matrix 953.3.4. Renormalization of the system's Hamiltonian 963.4. Motions of NH3 trapped in an argon matrix 973.4.1. Vibration-inversion mode nu2 983.4.2. Orientational motion 1003.4.3. Translational motion 1063.4.4. Orientational motion-heat bath coupling 1073.5. Infrared spectra 1083.5.1. Infrared absorption coefficient 1083.5.2. Bar spectrum 1093.5.3. Spectral profile 1123.6. Appendices 1163.6.1. Appendix 1: Normal modes of vibrations of a Bravais lattice with face centered cubic (fcc) symmetry 1163.6.2. Appendix 2: Adjustment of the weakly perturbed rotational potential energy on the basis of the rotation matrix elements 1203.6.3. Appendix 3: Expansion coefficients of the coupling between the orientation of the molecule and lattice vibrations (phonons) 121Chapter 4. Nanocages of Hydrate Clathrates 1234.1. Introduction 1234.2. The extended substitution model 1244.3. Clathrate structures 1294.4. Inclusion of a CH4 or NH3 molecule in a clathrate nanocage 1314.4.1. Inclusion model 1314.4.2. Interaction potential energy - equilibrium configuration 1334.5. System Hamiltonian and separation of movements 1364.6. Translational motion 1394.6.1. CH4 - nanocages of the sI structure 1404.6.2. NH3 - nanocages of the sI structure 1414.7. Vibrational motions 1424.7.1. CH4 - nanocages of the sI structure 1434.7.2. NH3 - nanocages of the sI structure 1444.8. Orientational motion 1454.8.1. CH4 - nanocages of the sI structure 1454.8.2. NH3 - nanocages of the sI structure 1494.9. Bar spectra 1574.9.1. Far infrared 1574.9.2. Near infrared 1594.10. Appendices 1624.10.1. Appendix 1: Expressions of the orientational transition elements in the harmonic librators approximation 1624.10.2. Appendix 2: Dipole moment as a function of dimensionless normal coordinates 164Chapter 5. Fullerene Nanocage 1695.1. Introduction 1705.2. Ammonia molecule trapped in a fullerene C60 nanocage 1715.2.1. Structure of the fullerene C60 nanocage 1715.2.2. Inclusion of NH3 in a fullerene C60 nanocage 1725.2.3. Interaction potential energy - equilibrium configuration 1745.3. Potential energy surfaces - inertial model 1765.3.1. Orientation-translational motion 1765.3.2. Translational motion 1785.3.3. Vibration-inversion-translational motion 1795.3.4. Kinetic Lagrangian 1795.4. Quantum treatment 1825.4.1. Vibrational modes - frequency shifts 1825.4.2. Vibration-inversion mode 1835.4.3. Orientational motions 1855.5. Bar spectra 1875.5.1. Far infrared and microwaves 1885.5.2. Near infrared 1885.6. Appendices 1905.6.1. Appendix 1: FORTRAN program 1905.6.2. Appendix 2: Expressions of the components of the dipole moment vector and its derivatives with respect to the normal vibrational coordinates 211Chapter 6. Adsorption on a Graphite Substrate 2136.1. Introduction 2136.2. "NH3 molecule-substrate" system interaction energy 2146.2.1. Description of the system 2146.2.2. "NH3 molecule-graphite substrate" interaction energy 2166.3. Equilibrium configuration and potential energy surfaces 2186.3.1. Adsorption energy 2216.4. Hamiltonian of the system 2216.4.1. Separation of movements 2236.4.2. Renormalized Hamiltonians 2246.4.3. Translational motions 2246.4.4. Vibrational motions 2256.4.5. Orientational motion 2306.4.6. Orientational motion - heat bath dynamic coupling 2356.5. Infrared spectra of the NH3 molecule adsorbed on the graphite substrate 2356.5.1. Far-infrared spectrum 2376.5.2. Near-infrared spectrum 2406.6. Conclusion 2466.7. Appendices 2466.7.1. Appendix 1: FORTRAN program 2466.7.2. Appendix 2: Expressions of the molecule orientation - heat bath phonons coupling terms 2596.7.3. Appendix 3: Expressions of the components of the dipole moment vector and its derivatives with respect to the normal vibration coordinates 259References 261Index 293
Pierre-Richard Dahoo is Professor and Holder of the Chair Materials Simulation and Engineering at the University of Versailles Saint-Quentin in France. He is Director of Institut des Sciences et Techniques des Yvelines and a specialist in modeling and spectroscopy at the LATMOS laboratory of CNRS.Azzedine Lakhlifi is Senior Lecturer at the Faculty of Sciences and Techniques of University of Franche-Comte and a researcher, specializing in modeling and spectroscopy at UTINAM Institute, UMR 6213 CNRS, OSU THETA Franche-Comte Bourgogne, University Bourgogne Franche-Comte, Besancon, France.