ISBN-13: 9780443191084 / Angielski / Miękka / 2023
PART 1 Fundamentals
1. Introduction
2. Optimization problems
3. Traditional methods
4. Metaheuristic algorithms
5. Simulated annealing
6. Tabu search
7. Genetic algorithm
8. Ant colony optimization
9. Particle swarm optimization
10. Differential evolution
PART 2 Advanced technologies
11. Solution encoding and initialization operator
12. Transition operator
13. Evaluation and determination operators
14. Parallel metaheuristic algorithm
15. Hybrid metaheuristic and hyperheuristic algorithms
16. Local search algorithm
17. Pattern reduction
18. Search economics
19. Advanced applications
20. Conclusion and future research directions
A. Interpretations and analyses of simulation results
B. Implementation in Python
Czytaj nas na: