ISBN-13: 9781119642992 / Angielski / Twarda / 2022 / 592 str.
ISBN-13: 9781119642992 / Angielski / Twarda / 2022 / 592 str.
List of Contributors xvPreface xxiPreface to Volume 3: Applications xxiii1 AIE-active Emitters and Their Applications in OLEDs 1Qiang Wei, Jiasen Zhang, and Ziyi Ge1.1 Introduction 11.2 Conventional Aggregation-induced Emissive Emitters 41.2.1 Blue Aggregation-induced Emissive Emitters 41.2.2 Green Aggregation-induced Emissive Emitters 71.2.3 Red Aggregation-induced Emissive Emitters 81.2.4 Aggregation-induced Emission-active Emitters-Based White OLED 91.3 High Exciton Utilizing Efficient Aggregation-induced Emissive Materials 131.3.1 Aggregation-induced Phosphorescent Emissive Emitters 131.3.2 Aggregation-induced Delayed Fluorescent Emitters 141.3.3 Hybridized Local and Charge Transfer Materials Aggregation-induced Emissive Emitters 151.4 Conclusion and Outlook 16References 182 Circularly Polarized Luminescence of Aggregation-induced Emission Materials 27Fuwei Gan, Chengshuo Shen, and Huibin Qiu2.1 Introduction of Circularly Polarized Luminescence 272.2 Small Organic Molecules 282.3 Macrocycles and Cages 332.4 Metal Complexes and Clusters 352.5 Supramolecular Systems 372.6 Polymers 462.7 Liquid Crystals 502.8 Conclusions and Outlook 51References 533 AIE Polymer Films for Optical Sensing and Energy Harvesting 57Andrea Pucci3.1 Introduction 573.2 Working Mechanism of AIEgens 593.3 AIE-doped Polymer Films for Optical Sensing 613.3.1 Mechanochromic AIE-doped Polymer Films 613.3.2 Thermochromic AIE-doped Polymer Films 653.3.3 Vapochromic AIE-doped Polymer Films 673.4 AIE-doped Polymer Films for Energy Harvesting 703.5 Conclusions 72References 734 Aggregation-induced Electrochemiluminescence 79Serena Carrara4.1 Introduction: From Electrochemiluminescence to AI-ECL 794.1.1 Mechanisms of AI-ECL 814.2 Classification and Properties of AI-ECL luminophores 854.2.1 Metal Transition Complexes 854.2.2 Polymers and Polymeric Nanoaggregates 874.2.3 Organic Molecules 904.2.4 Hybrid and Functional Materials 934.3 Applications and Outlooks 95References 985 Mechanoluminescence Materials with Aggregation-induced Emission 105Zhiyong Yang, Juan Zhao, Eethamukkala Ubba, Zhan Yang, Yi Zhang, and Zhenguo Chi5.1 Introduction 1055.2 Mechanoluminescence of Organic Molecules Not Mentioned AIE 1075.3 ML-AIE Materials 1175.4 Summary and Outlook 132References 1336 Dynamic Super-resolution Fluorescence Imaging Based on Photo-switchable Fluorescent Spiropyran 139Cheng Fan, Chong Li, and Ming-Qiang Zhu6.1 Introduction 1396.2 Materials and Methods 1416.2.1 Materials 1416.2.2 The Preparation of PSt-b-PEO Block Copolymer Micelles 1416.2.3 Super-resolution Microscope 1416.2.4 Super-resolution Imaging 1416.3 Super-resolution Imaging of Block Copolymer Self-assembly 1416.4 Optimization of Spatial Resolution 1446.5 Temporal Resolution 1456.6 Dynamic Super-resolution Imaging 1476.7 Conclusion and Prospection 147References 1497 Visualization of Polymer Microstructures 151Shunjie Liu, Yuanyuan Li, Ting Han, Jacky W. Y. Lam, and Ben Zhong Tang7.1 Introduction 1517.2 Synthetic Polymers 1527.2.1 Polymer Self-assembly 1527.2.2 Polymerization Reaction 1547.2.3 Physical Process Visualization 1557.2.3.1 Glass Transition Temperature 1557.2.3.2 Solubility Parameter 1577.2.3.3 Crystallization 1587.2.3.4 Microphase Separation 1587.2.4 Stimuli Response 1617.2.4.1 Heat Response 1617.2.4.2 Humidity Response 1627.2.4.3 Other Response 1647.3 Biological Polymers 1647.3.1 DNA Synthesis 1657.3.2 DNA Sequence 1657.3.3 Protein Conformation 1687.3.4 Protein Fibrillation 1697.3.5 Other Process 1717.4 Summary and Perspective 172References 1738 Self-assembly of Aggregation-induced Emission Molecules into Micelles and Vesicles with Advantageous Applications 179Jinwan Qi, Jianbin Huang, and Yun Yan8.1 General Background of Micelles and Vesicles 1798.2 AIE Micelles 1808.2.1 General Strategies Leading to AIE Micelles 1808.2.1.1 Incorporating Tetraphenylethylene (TPE) Unit into Single-Chained Surfactants 1808.2.1.2 Incorporating Tetraphenylethylene (TPE) Unit into Gemini Surfactants 1828.2.1.3 Incorporating Platinum Complex into Amphiphiles 1828.2.1.4 Polymeric AIE Micelles 1838.2.1.5 Coassembled AIE Micelles 1888.2.2 Applications of AIE Micelles 1908.2.2.1 Untargeted Bioimaging 1918.2.2.2 Targeted Bioprobing 1928.2.2.3 Micellar Theranostics 1938.2.2.4 Sensing 1978.2.2.5 Visualization of Physical Chemistry Process 1998.3 AIE Vesicles 2038.3.1 AIE Vesicles Based on Synthetic Amphiphiles 2038.3.1.1 Synthetic Ionic Amphiphiles 2038.3.1.2 Synthetic Nonionic AIE Amphiphiles 2038.3.1.3 Synthetic Nonamphiphilic AIE Molecules 2058.3.2 Supramolecular AIE Vesicles 2068.3.2.1 AIE Vesicles Directed by Host-Guest Chemistry 2088.3.2.2 AIE Vesicles Based on Electrostatic Interactions 2098.3.2.3 AIE Vesicles Based on Coordination Interactions 2098.3.3 Applications of AIE Vesicles 2108.3.3.1 Cell Models 2108.3.3.2 Bioimaging 2118.3.3.3 Theranostics 2128.3.3.4 Light-harvesting 2148.3.3.5 Other Applications 2168.4 Summary and Outlooks 217References 2179 Vortex Fluidics-mediated Fluorescent Hydrogels with Aggregation-induced Emission Characteristics 221Javad Tavakoli and Youhong Tang9.1 Introduction 2219.2 Tunning the Size and Property of AIEgens, a New Approach to Create FL Hydrogels with Superior Properties 2229.3 AIEgens for Characterization of Hydrogels 2319.4 Conclusion 238References 23810 Design and Preparation of Stimuli-responsive AIE Fluorescent Polymers-based Probes for Cells Imaging 243Juan Qiao and Li Qi10.1 Introduction 24310.2 Design and Preparation Strategies for AIE-SRP Probes 24610.2.1 Mechanism of AIE-SRP Probes 24610.2.2 Stimuli-Responsive Polymers 24710.2.2.1 Thermal-Sensitive Polymers 24710.2.2.2 pH-Sensitive Polymers 24710.2.2.3 Photo-Sensitive polymers 24710.2.2.4 Protein-Sensitive Polymers 24810.2.3 AIE Dyes 24910.2.4 Combination of Stimuli-Sensitive Polymer and AIE Dyes 25110.2.4.1 Chemical Synthesis 25110.2.4.2 Physical Blending 25610.3 Application of AIE-SRP Probes 25710.3.1 Thermal-Sensitive Application 25710.3.2 pH-Sensitive Application 25910.3.3 Photo-Sensitive Application 26010.3.4 Protein-Sensitive Application 26010.3.5 MultiSensitive Application 26010.4 Summary and Prospect 262References 26311 AIE: New Strategies for Cell Imaging and Biosensing 269Tracey Luu, Bicheng Yao, and Yuning Hong11.1 Introduction 26911.2 Cellular Imaging 27111.2.1 Cytoplasma Membrane Imaging 27211.2.2 Mitochondria Imaging 27311.2.3 Lysosome Imaging 27511.2.4 Lipid Droplet Imaging 27611.2.5 Nucleus Imaging 27711.3 Biosensing 27811.3.1 Ions 27911.3.2 Lipids and Carbohydrates 28111.3.3 Amino Acids, Proteins, and Enzymes 28311.3.4 Nucleic Acids and Pathogens 28611.4 Conclusion 289References 28912 AIE-based Systems for Imaging and Image-guided Killing of Pathogens 297Jiangman Sun, Fang Hu, Yongjie Ma, Yufeng Li, Guan Wang, and Xinggui Gu12.1 Introduction 29712.2 Bacteria Imaging Based on AIEgens 29812.2.1 Broad-spectrum Bacterial Imaging and Identification 29912.2.2 Gram Positive and Gram Negative Bacteria Distinguishing 29912.2.3 Long-term Bacterial Tracking 30312.2.4 Live and Dead Bacteria Discrimination Based on AIEgens 30412.3 Bacteria-targeted Imaging and Ablation Based on AIEgens 30512.3.1 Surfactant-structure Based AIEgens for Bacterial Elimination 30512.3.2 Photodynamic Therapy for Bacterial Elimination 30912.3.2.1 Vancomycin-bacteria Interaction Mediated Photodynamic Ablation 30912.3.2.2 Positive-charged AIE PS for Bacteria Ablation 31112.3.2.3 Metabolic Labeling-mediated Imaging and Photodynamic Ablation 31312.3.3 AIEgen with Antimicrobial Agents for Bacteria Elimination 31512.3.4 Biodegradable Biocides for Bacteria Elimination 31512.4 Bacterial Susceptibility Evaluation and Antibiotics Screening 31512.5 Sensors for Bacterial Detection Based on AIEgens 31712.5.1 Fluorescent Sensor Arrays 31712.5.2 Biosensors Constructed by Electrospun Fibers 31912.5.3 Micromotors for Bacterial Detection 32012.6 Conclusions and Perspectives 321References 32113 AIEgen-based Trackers for Cancer Research and Regenerative Medicine 329Chen Zhang and Kai Li13.1 Introduction 32913.2 AIEgens for Long-term Cancer Cell Tracking 33013.2.1 AIEgen-based Long-term Cell Trackers with Emission in the Visible Range 33013.2.2 AIEgen-based Long-term Cell Trackers with Near-infrared (NIR) Emission 33413.2.3 AIEgen-based Long-term Cell Trackers with Multiphoton Absorption 33513.2.4 AIEgen-based Hybrid or Multifunctional Systems for Cell Tracking 33613.3 AIEgens for Stem Cell-based Regenerative Medicine and Regeneration-related Process 33813.3.1 AIEgen-based Trackers for Adipose-derived Stem Cells 33813.3.2 AIEgen-based Trackers for Bone Marrow Stem Cells 34013.3.3 AIEgen-based Trackers for Embryo-related Cells 34213.3.4 AIEgens for Monitoring Biological Process in Regenerative Medicine 34513.3.5 AIEgen-based Nanocomplexes in Regenerative Medicine 34613.4 Conclusion 347References 35014 AIE-active Fluorescence Probes for Enzymes and Their Applications in Disease Theranostics 355Jianguo Wang and Guoyu Jiang14.1 Introduction 35514.2 AIE-active Fluorescence Probes for Enzymes and Their Applications in Disease Theranostics 35614.2.1 AIE-active Fluorescence Probes for Alkaline Phosphatase 35614.2.2 AIE-active Fluorescence Probes for Caspases 35814.2.3 AIE-active Fluorescence Probes for Cathepsin B 36114.2.4 AIE-active Fluorescence Probes for ß-Galactosidase 36314.2.5 AIE-active Fluorescence Probes for gamma-Glutamyltranspeptidase 36514.2.6 AIE-active Fluorescence Probes for Reductases 36614.2.6.1 AIE-active Fluorescence Probes for AzoR 36614.2.6.2 AIE-active Fluorescence Probes for NQO1 36914.2.6.3 AIE-active Fluorescence Probes for NTR 36914.2.6.4 AIE-active Fluorescence Probes for CYP450 Reductase 37114.2.7 AIE-active Fluorescence Probes for Chymase 37114.2.8 AIE-active Fluorescence Probes for Esterase 37214.2.8.1 AIE-active Fluorescence Probes for CaE 37214.2.8.2 AIE-active Fluorescence Probes for Lipase 37514.2.9 AIE-active Fluorescence Probes for Histone Deacetylase 37614.2.10 AIE-active Fluorescence Probes for MMP-2 37914.2.11 AIE-active Fluorescence Probes for Furin 38014.2.12 AIE-active Fluorescence Probes for Trypsin 38014.2.13 AIE-active Fluorescence Probes for Telomerase 38514.2.14 AIE-active Fluorescence Probes for DPP-4 38614.3 Summary and Outlook 387References 38815 AIE Nanoprobes for NIR-II Fluorescence In Vivo Functional Bioimaging 399Zhe Feng, Xiaoming Yu, and Jun Qian15.1 Introduction 39915.2 NIR-II Fluorescence Macroimaging In Vivo 40015.3 NIR-II Fluorescence Wide-field Microscopic Imaging In Vivo 43615.4 NIR-II Fluorescence Confocal Microscopic Imaging In Vivo 44015.5 Summary and Perspectives 441References 44416 In Vivo Phototheranostics Application of AIEgen-based Probes 447Zhiyuan Gao, Heqi Gao, and Dan Ding16.1 Introduction 44716.2 AIE Fluorescent Probe with Photodynamic Therapy Function 44816.3 AIE Photoacoustic Probe with Photothermal Therapy Function 45116.4 Application of AIE Fluorescent Probe in Synergistic Therapy 45416.5 AIE Fluorescent Probe with Immunotherapy Function 45816.6 Conclusions and Perspectives 460References 46017 Red-emissive AIEgens Based on Tetraphenylethylene for Biological Applications 465Yanyan Huang, Fang Hu, and Deqing Zhang17.1 Introduction 46517.2 TPE-based AIEgens with Dicyanovinyl Group 46617.2.1 Design of Red-emissive AIEgens with Dicyanovinyl Group 46617.2.2 Red-emissive AIEgens as Photosensitizers 46917.2.3 Photosensitization Enhancement of AIEgens with Dicyanovinyl Group 47117.2.4 Self-assembly of AIEgens with Dicyanovinyl Groups 47317.3 Pyridinium-based AIEgens 47517.3.1 Photophysical Properties of Pyridinium-based AIEgens 47517.3.2 Bio-sensing Applications of Pyridinium-substituted Tetraphenylethylenes 47717.3.3 Bacterial Imaging and Ablation 47917.3.4 Imaging and Interrupting Mitochondria and Related Biological Processes with Pyridinium-based AIEgens 48017.4 Summary and Perspectives 485References 48518 Smart Luminogens for the Detection of Organic Volatile Contaminants 491Niranjan Meher and Parameswar Krishnan Iyer18.1 Introduction 49118.2 Smart AIE Nanomaterials and their Sensing Applications for OVCs 49318.2.1 Organic Framework 49318.2.2 Molecular Rotors 49918.2.3 Other Small Molecule 50218.3 Summary and Outlook 506References 50619 Bulky Hydrophobic Counterions for Suppressing Aggregation-caused Quenching of Ionic Dyes in Fluorescent Nanoparticles 511Ilya O. Aparin, Nagappanpillai Adarsh, Andreas Reisch, and Andrey S. Klymchenko19.1 Introduction 51119.2 Counterion Effect in Nanomaterials Based on Conventional Bright Fluorophores 51319.3 Counterions and Aggregation-induced Emission 51619.3.1 Counterion Effect in AIE Dyes 51719.3.2 Ionic AIE: Lighting Up Environment-sensitive Ionic Dyes in Nanomaterials 51919.4 Dye-loaded Polymeric NPs and the Crucial Role of Bulky Counterions 52319.4.1 Principle 52319.4.2 The Role of the Polymer 52519.4.3 The Role of the Counterion 52519.4.4 Dye Nature 52819.4.5 Energy Transfer, Collective Behavior of Dyes and Biosensing 53119.5 Conclusions 532References 53420 Fluorescent Silver Staining Based on a Fluorogenic Ag¯+ Probe with Aggregation-induced Emission Properties 541Chuen Kam, Sheng Xie, Alex Y. H. Wong, and Sijie Chen20.1 Introduction 54120.2 Historical Background of Silver Staining 54120.2.1 Silver Staining for Neurological Studies 54220.2.2 Silver Staining from Neuroscience to Proteomics 54420.3 Conventional Silver Staining Methods 54420.4 Fluorogenic Probes for Ag¯+ Detection 54620.5 Fluorogenic Silver Staining in Polyacrylamide Gel 55020.6 Concluding Remarks 554References 554Index 559
Youhong Tang is a Professor at Flinders University, Australia and actively works in aggregation-induced emission areas.Ben Zhong Tang is a Chair Professor at the Chinese University of Hong Kong, Shenzhen. He is widely known as the pioneer of the study of aggregation-induced emission.
1997-2024 DolnySlask.com Agencja Internetowa