ISBN-13: 9781119642985 / Angielski / Twarda / 2022 / 624 str.
ISBN-13: 9781119642985 / Angielski / Twarda / 2022 / 624 str.
List of Contributors xviiPreface to Handbook of Aggregation-Induced Emission xxiiiPreface to Volume 2: Typical AIEgens Design xxv1 Tetraphenylpyrazine-based AIEgens: Synthesis and Applications 1Ming Chen, Anjun Qin, and Ben Zhong Tang1.1 Introduction 11.2 Synthesis of TPP-based AIEgens 31.2.1 Cyclization Reaction 31.2.2 Suzuki-Miyaura Reaction 71.3 Functionalities of TPP-based AIEgens 81.3.1 Organic Light-emitting Diodes 81.3.2 Fluorescent Sensors 91.3.3 Chiral Cage for Self-assembly to Achieve White-light Emission 131.3.4 Metal-organic Framework 151.4 Conclusion 17References 182 AIEgens Based on 9,10-Distyrylanthracene (DSA): From Small Molecules to Macromolecules 23Leijing Liu, Bin Xu, and Wenjing Tian2.1 Introduction 232.2 Application of AIE Luminogens Based on 9,10-Distyrylanthracene 242.2.1 Smart Materials with Stimulus Response 242.2.1.1 Piezofluorochromic Materials 242.2.1.2 Photochromic Materials 272.2.1.3 Thermochromic Materials 272.2.1.4 Acidichromic Materials 272.2.1.5 Multistimuli-responsive Materials 302.2.2 High Solid-state Luminescent Materials 302.2.3 Fluorescent Materials for Bioimaging 352.2.4 Fluorescent Probes for Chemical and Biological Sensing 412.2.4.1 Fluorescent Probes for Chemical Sensing 412.2.4.2 Fluorescent Probes for Biological Sensing 442.3 Conclusions and Outlook 46Acknowledgments 47References 473 Typical AIEgens Design: Salicylaldehyde Schiff Base 53Yue Zheng and Aijun Tong3.1 Introduction 533.1.1 AIE and ESIPT of Salicylaldehyde Schiff Base 533.1.2 Universal Design of SSB-based AIEgens 553.2 Fluorescent Probes 553.2.1 Metal Ion Detection and Imaging 553.2.2 Biologically and Environmentally Related Molecular Detection and Imaging 633.2.3 Ratiometric pH Probes 763.2.4 Bioimaging 763.3 Fluorescent Materials 813.3.1 Solid Fluorescence Emitting and Stimuli-Responsive Materials 813.3.2 Nanoparticles 883.4 Summary and Perspectives 91References 924 Diaminodicyanoquinodimethanes: Fluorescence Emission Enhancement in Aggregates and Solids 97N. Senthilnathan and T. P. Radhakrishnan4.1 Introduction 974.1.1 Molecular Materials 974.1.2 'Push-Pull' Molecules 974.1.3 Diaminodicyanoquinodimethanes 984.2 Nonlinear Optical Materials based on DADQs 1004.2.1 Molecular Hyperpolarizability 1004.2.2 SHG Materials 1004.2.3 Structure-Property Correlations 1014.3 Enhanced Fluorescence in Aggregates and Solids Based on DADQs 1024.3.1 Remote Functionalized Systems 1024.3.2 Color Tuning, Nanocrystals, and Colloids 1034.3.3 Ultrathin Films 1054.3.4 New Directions 1054.4 Mechanistic Insights into the Enhanced Fluorescence 1064.4.1 Relevance of Intramolecular Effects 1064.4.2 Role of Intermolecular Effects 1064.5 Impact of Crystallinity on the Fluorescence Response 1084.5.1 Amorphous-to-Crystalline Transformation: Fluorescence Switching and Tuning 1084.5.2 Reversible Amorphous-Crystalline Transformations: Phase Change Materials 1084.5.3 Impact of External Stimuli 1104.6 Emergent and Potential Applications of DADQs 1104.6.1 Electroluminescence and Nonlinear Optics 1104.6.2 Bioimaging 1104.6.3 Photoelectrochemical and Photobioelectrochemical Applications 1124.6.4 Memory Devices 1124.7 ConcludingRemarks 113Acknowledgements 114References 1145 Aggregation-induced Emission from the Sixth Main Group 119Jan Balszuweit, Bibhisan Roy, and Jens Voskuhl5.1 Introduction 1195.2 Oxygen 1195.2.1 Oxygen-Containing Heterocycles 1205.2.2 Oxo-ether Containing AIE-Active Luminogens 1225.3 Sulfur 1265.3.1 Luminogens Based on Thiophenes 1265.3.2 Thioethers with Aggregation-Induced Emission Properties 1295.3.3 Emissive Sulfones 1315.4 Selenium and Tellurium 1325.4.1 Selenium-Containing Luminophores 1325.4.2 Tellurium-Containing Luminophores 1345.5 Conclusion 138Acknowledgment 138References 1386 Fluorescence Detection of Dynamic Aggregation Processes Using AIEgens: Hexaphenylsilole and Cyanostilbene 143Fuyuki Ito6.1 Introduction 1436.2 Selective Detection of Phase Transformation During Evaporative Crystallization of Hexaphenylsilole 1456.3 Observation of the Initial Stage of Organic Crystal Formation During Solvent Evaporation Using a Cyanostilbene Derivative 1496.4 Chemometrix Analysis of the Aggregated Structure of Cyanostilbene in a Reprecipitation Solution Using Fluorescence Excitation Spectroscopy 1526.5 UV-triggered Fluorescence Enhancement of a Dicyanostilbene Derivative Film Cast from an Ethanol Solution 1586.6 Concluding Remarks 162Acknowledgments 162References 1627 Cyclic Triimidazole Derivatives: An Intriguing Family of Multifaceted Emitters 165Elena Cariati, Elena Lucenti, Andrea Previtali, and Alessandra Forni7.1 Introduction 1657.2 The Protoype: Cyclic Triimidazole 1667.3 Halogenated Derivatives of Cyclic Triimidazole 1757.3.1 Bromine Derivatives 1767.3.2 Iodine Derivatives 1797.4 Organic Derivatives 1847.4.1 2-Fluoropyridine Derivative 1857.4.2 Tribenzoimidazole Derivative 1867.5 Hybrid Inorganic/Organic Derivatives 1887.6 Conclusions 191Acknowledgments 191References 1918 Synthesis of Multi-phenyl-substituted Pyrrole (MPP)-based AIE Materials and Their Applications 195Zhengxu Cai, Yunxiang Lei, and Yuping Dong8.1 Introduction 1958.2 Modular Approach: Systematic Synthesis of MPPs 1968.3 Structures and Photophysical Properties 1988.4 Applications of MPP-based Materials 2048.4.1 Chemical/Biological Sensing 2048.4.2 Multi-stimulus Response Materials 2088.4.3 Optoelectronic Systems 2108.4.4 Biological Application 2138.5 Conclusion and Outlook 216References 2169 Development of a New Class of AIEgens: Tetraarylpyrrolo [3,2-b] Pyrroles (TAPPs) 221Vishal G. More, Ratan W. Jadhav, Mohammad Al Kobaisi, Lathe A. Jones, and Sheshanath V. Bhosale9.1 Introduction 2219.2 The Accidental Discovery of TAPP 2239.3 Synthesis of TAPP 2239.4 Possible Mechanism of TAPP Synthesis 2279.5 Reactivity of TAPP 2289.6 pi-Expansion of TAPP 2299.7 pi-Expanded 1,4-dihydropyrrolo[3,2-b] pyrrole 2319.8 Photophysical Optical Properties of TAPP 2399.9 Conclusion and Outlook 245Acknowledgments 247References 24710 Small Molecule Organogels from AIE Active alpha-Cyanostilbenes 255Jagadish Katla, Beena Kumari, and Sriram Kanvah10.1 Introduction 25510.2 Organogels with Trifluoromethyl Substitution 25610.3 Organogels with Chiral Units/Chiral Hosts 26010.4 Stimuli-Responsive Organogels 26210.5 Organogels with Sensing Applications 26610.6 Concluding Remarks 271Acknowledgments 271References 27111 Stimuli-responsive Pure Organic Luminescent Supramolecules 277Siyu Sun and Xiang Ma11.1 Introduction 27711.2 Pure Organic Fluorescent Supramolecules 28011.2.1 Pure Organic Fluorescent Supramolecules Containing Macrocycles 28011.2.1.1 Pure Organic Fluorescent Supramolecules Containing Cyclodextrins 28011.2.1.2 Pure Organic Fluorescent Supramolecules Containing Calixarenes 28411.2.1.3 Pure Organic Fluorescent Supramolecules Containing Cucurbiturils 28411.2.1.4 Pure Organic Fluorescent Supramolecules Containing Pillararene 28811.2.1.5 Pure Organic Fluorescent Supramolecules Containing Crown Ether 29011.2.2 Pure Organic Fluorescent Supramolecules Without Macrocycles 29111.3 Pure Organic Phosphorescent Supramolecules 29311.3.1 Pure Organic Phosphorescent Supramolecules Based on Macrocyclic Molecules 29311.3.1.1 Pure Organic Phosphorescent Supramolecules Containing Cyclodextrin 29311.3.1.2 Pure Organic Phosphorescent Supramolecules Containing Cucurbiturils 29711.3.1.3 Pure Organic Phosphorescent Supramolecules Containing Calixarenes 29711.3.1.4 Pure Organic Phosphorescent Supramolecules Containing Crown Ether 29711.3.2 Pure Organic Phosphorescent Supramolecules Without Macrocyclic Molecules 29911.3.2.1 Pure Organic Supramolecular Phosphorescence System With Doping-Based Host-Guest Interaction 29911.3.2.2 Other Pure Organic Phosphorescent Supramolecules 30111.4 Conclusions 306Acknowledgments 306References 30712 AIE Fluorescent Polymersomes 311Hui Chen and Min-Hui Li12.1 Introduction 31112.2 Structural Consideration of Block Copolymers for Polymersome Formation 31412.3 Methods of Polymersome Preparation 31512.4 Techniques of Polymersome Characterization 31712.5 AIE Polymersomes Based on PEG-b-POSS 31712.6 AIE Polymersomes Based on Amphiphilic Polypeptoids 31912.7 AIE Polymersomes Based on PEG-b-Polycarbonate 32112.8 AIE Polymersomes Based on Amphiphilic Polynorbornene 32312.9 AIE Polymersomes Based on Amphiphilic Block Copolymers by RAFT Polymerization 32612.10 Summary and Perspectives 330References 33413 Designs for AIE Molecules and Functional Luminescent Materials Based on Boron-containing Element-blocks 341Kazuo Tanaka, Masayuki Gon, Shunichiro Ito, and Yoshiki Chujo13.1 Introduction 34113.1.1 Generals of Commodity Luminescent Boron Complexes 34113.1.2 Trends in the Development of Advanced Organic Electronic Devices 34213.1.3 Strategies for Obtaining Solid-state Luminescence and Stimuli-responsiveness 34313.1.4 New Ideas for Material Design Based on "Element-blocks" 34313.2 Solid-state Luminescence and Luminochromism of o-Carboranes 34413.2.1 Emission Mechanism of Aryl-modified o-Carboranes 34413.2.2 AIE Behavior of o-Carborane Materials 34413.2.3 Formation of Twisted Intramolecular Charge Transfer (TICT) State in the Crystalline State of o-Carboranes 34613.2.4 Thermochromic Luminescence of o-Carboranes 34613.2.5 Intense Solid-state Luminescent Molecules 34713.2.6 Solid-state Excimer Emission 34813.3 Boron Complexes with ß-Ketimine and ß-Diketimine Ligands 34913.3.1 Generals of Boron Ketiminates and Diketiminates 34913.3.2 Unique Solid-state Luminescent Properties of Conjugated Boron Complexes 35013.3.3 Thermally Stable Mechanochromic Luminescent Hybrid with the Siloxane Unit 35013.3.4 Luminescent Properties of ß-Diketiminate Complexes 35213.3.5 AIE-active Conjugated Polymers 35213.3.6 Design for Film-type Sensors 35313.3.7 Sensitive Luminochromic Sensors with Gallium Complexes 35413.4 Rational Design for AIE-active Molecules Based on "Flexible" Boron Complexes 35513.4.1 Concept for Rational Design 35513.4.2 Ring-fused or Nonring-fused Molecules 35513.4.3 Thermosalient-active Molecules 35713.4.4 Solid-state Luminescent pi-Conjugated Polymer 35813.5 Conclusion 359References 35914 Aggregation-induced Emission (AIE) Active Metal-Organic Coordination Complexes 367Xueliang Shi, Xuzhou Yan, and Hai-Bo Yang14.1 Introduction 36714.2 Conception and Design Strategy 36814.3 AIE Active Metallacycles 37114.3.1 AIE Active Simple Metallacycles 37114.3.2 AIE Active Fused Metallacycles 37814.3.3 AIE Active Metallacycle Polymers 38214.4 AIE Active Metallacages 38914.5 AIE Active Metal-organic Frameworks (MOFs) 39714.6 Summary and Outlook 405Acknowledgments 406References 40615 AIE-type Luminescent Metal Nanoclusters 411Zhennan Wu, Qiaofeng Yao, and Jianping Xie15.1 Introduction 41115.2 In the "Single-cluster" Scenario 41215.2.1 AIE-type Luminescent Metal NCs 41215.2.2 Atomically Precise AIE-type Luminescent Metal NCs 41615.2.3 Approaches to Luminescence Enhancement of Metal NCs in the Scheme of AIE 41815.2.3.1 Surface Engineering 41815.2.3.2 Roles of the Core 42215.3 Beyond the "Single-cluster" Scenario 42315.3.1 Poor-solvent-induced AIE of Metal NCs 42315.3.2 Ion-induced AIE of Metal NCs 42315.3.3 Supramolecular Interactions Induced AIE of Metal NCs 42615.3.4 Spatial Confinement-induced AIE of Metal NCs 42915.4 Application of the AIE-type Luminescent Metal NCs 43315.4.1 Chemical Sensing 43315.4.2 Biological Applications 43415.4.3 Photosensitizer 43415.4.4 Light-emitting Diodes (LEDs) 43415.5 Conclusion and Outlook 436References 43716 Aggregation-induced Emission in Coinage Metal Clusters 443Shuang-Quan Zang and Kai Li16.1 Introduction 44316.2 AIE-active Gold Cluster 44416.3 AIE-active Silver Cluster 45016.4 AIE-active Copper Cluster 45416.5 AIE-active Bimetallic Cluster 46216.6 Conclusions 465References 46617 Activated Alkynes in Metal-free Bioconjugation 471Xianglong Hu and Ben Zhong Tang17.1 Introduction 47117.2 Alkyne-Azide-based Bioconjugation 47217.3 Activated Alkyne-Amine-based Bioconjugation 47317.4 Activated Alkyne-Thiol-based Bioconjugation 48017.5 Activated Alkyne-Hydroxyl-based Bioconjugation 48317.6 Activated Alkyne-based Bioconjugation and Polymerization in Living Cells and Pathogens 48417.7 Conclusion 488References 48818 AIE-active BODIPY Derivatives 493Yali Liu, Yuzhang Huang, Rongrong Hu, and Ben Zhong Tang18.1 Introduction 49318.2 Structures of BODIPY Derivatives 49518.2.1 BODIPY Derivatives Without Other Chromophore 49518.2.2 TPE-containing BODIPYs 49618.2.3 TPA-containing BODIPYs 49818.2.4 Benzodithiophene-containing BODIPYs 49918.2.5 Chiral BODIPYs 50018.2.6 Metal-containing BODIPYs 50218.2.7 BODIPY-containing Polymers 50318.2.8 Other BODIPY Derivatives 50418.3 Structural-property Relationship 50818.3.1 Conjugation Effect 50818.3.2 Number and Position of Substitutes 50818.3.3 Substitution Group 51318.3.4 Alkyl Substitutes on BODIPY Core 51618.3.5 AIEgens Attached Through Nonconjugated Spacers 51818.3.6 Other Substitution Structures 51918.4 Application 52218.4.1 Chemosensor 52218.4.2 Bioimaging 52618.5 Conclusion 532References 53219 Photochemistry-regulated AIEgens and Their Applications 537Xia Ling and Meng Gao19.1 Introduction 53719.2 Photocleavage Reaction 53719.3 Photoreduction Reaction 53919.4 Photocyclodehydrogenation Reaction 54019.5 Photooxidative Dehydrogenation Reaction 54319.6 Spiropyran-merocyanine Reversible Conversion 54419.7 Dithienylethene-based Ring-open/-closing Reaction 54519.8 Enol-Keto Isomerization Reaction 55019.9 E/Z Isomerization Reaction 55219.10 Photo-induced [2 + 2] Cycloaddition 55419.11 Combinational Photoreactions 55419.12 Conclusion and Outlook 556References 55620 Design and Development of Naphthalimide Luminogens 559Niranjan Meher and Parameswar Krishnan Iyer20.1 Introduction 55920.2 Naphthalimides with N-Functionalization (I) 56420.3 Naphthalimides Substituted at the 4th Position with Oxygen Atom (II) 56720.4 Naphthalimides Substituted at the 4th Position with Nitrogen Atom (III) 57020.5 Naphthalimides with C.C Aromatic Substitution (IV) 57120.6 Naphthalimides with C.C Double-and Triple-Bond Substitutions (V and VI) 57420.7 Naphthalimides with the Significant Role of Multifunctionalization (VII) 57620.8 Conclusion and Outlooks 580References 581Index 587
Youhong Tang is a Professor at Flinders University, Australia and actively works in aggregation-induced emission areas.Ben Zhong Tang is a Chair Professor at the Chinese University of Hong Kong, Shenzhen. He is widely known as the pioneer of the study of aggregation-induced emission.
1997-2024 DolnySlask.com Agencja Internetowa