ISBN-13: 9781119423690 / Angielski / Twarda / 2019 / 448 str.
ISBN-13: 9781119423690 / Angielski / Twarda / 2019 / 448 str.
Introduction to the Third Edition xiHistory xiii1 Principles of Designing Glass-Ceramic Formation 11.1 Advantages of Glass-Ceramic Formation 11.1.1 Processing Properties 11.1.2 Thermal Properties 21.1.3 Optical Properties 31.1.4 Chemical Properties 31.1.5 Biological Properties 31.1.6 Mechanical Properties 31.1.7 Electrical and Magnetic Properties 31.2 Factors of Design 41.3 Crystal Structures and Mineral Properties 41.3.1 Crystalline Silicates 41.3.1.1 Nesosilicates 51.3.1.2 Sorosilicates 51.3.1.3 Cyclosilicates 51.3.1.4 Inosilicates 61.3.1.5 Phyllosilicates 71.3.1.6 Tectosilicates 71.3.2 Phosphates 271.3.2.1 Apatite 271.3.2.2 Orthophosphates and Diphosphates 291.3.2.3 Metaphosphates 301.3.3 Oxides 311.3.3.1 TiO2 321.3.3.2 ZrO2 321.3.3.3 MgAl2O4 (Spinel) 331.4 Nucleation 341.4.1 Homogeneous Nucleation 361.4.2 Heterogeneous Nucleation 381.4.3 Kinetics of Homogeneous and Heterogeneous Nucleation 391.4.4 Limits of the Classical Nucleation and Crystallization Theory (CNT) and New Approaches 421.4.5 Examples of Applying the Nucleation Theory in the Development of Glass-Ceramics 441.4.5.1 Internal (Volume) Nucleation 441.4.5.2 Surface Nucleation 481.4.5.3 Temperature-Time-Transformation Diagrams 501.5 Crystal Growth 531.5.1 Primary Growth 541.5.2 Anisotropic Growth 551.5.3 Surface Growth 611.5.4 Dendritic and Spherulitic Crystallization 621.5.4.1 Phenomenology 621.5.4.2 Dendritic and Spherulitic Crystallization Applications 641.5.5 Secondary Grain Growth 642 Composition Systems for Glass-Ceramics 672.1 Alkaline and Alkaline Earth Silicates 672.1.1 SiO2-Li2O (Lithium Disilicate) 672.1.1.1 Stoichiometric Composition 672.1.1.2 Nonstoichiometric Multicomponent Compositions 692.1.2 SiO2-BaO (Sanbornite) 782.1.2.1 Stoichiometric Barium Disilicate 782.1.2.2 Multicomponent Glass-Ceramics 792.2 Aluminosilicates 802.2.1 SiO2-Al2O3 (Mullite) 802.2.2 SiO2-Al2O3-Li2O (ß-Quartz Solid Solution, ß-Spodumene Solid Solution) 822.2.2.1 ß-Quartz Solid Solution Glass-Ceramics 822.2.2.2 ß-Spodumene Solid Solution Glass-Ceramics 862.2.3 SiO2-Al2O2-Na2O (Nepheline) 882.2.4 SiO2-Al2O3-Cs2O (Pollucite) 912.2.5 SiO2-Al2O3-MgO (Cordierite, Enstatite, Forsterite) 932.2.5.1 Cordierite Glass-Ceramics 932.2.5.2 Enstatite Glass-Ceramics 972.2.5.3 Forsterite Glass-Ceramics 992.2.6 SiO2-Al2O3-CaO (Wollastonite) 1012.2.7 SiO2-Al2O3-ZnO (Zn-Stuffed ß-Quartz, Willemite-Zincite) 1032.2.7.1 Zinc-Stuffed ß-Quartz Glass-Ceramics 1032.2.7.2 Willemite and Zincite Glass-Ceramics 1052.2.8 SiO2-Al2O3-ZnO-MgO (Spinel, Gahnite) 1052.2.8.1 Spinel Glass-Ceramic without ß-Quartz 1052.2.8.2 ß-Quartz-Spinel Glass-Ceramics 1072.2.9 SiO2-Al2O3-CaO (Slag Sital) 1082.2.10 SiO2-Al2O3-K2O (Leucite) 1112.2.11 SiO2-Ga2O3-Al2O3-Li2O-Na2O-K2O (Li-Al-Gallate Spinel) 1142.2.12 SiO2-Al2O3-SrO-BaO (Sr-Feldspar-Celsian) 1152.3 Fluorosilicates 1182.3.1 SiO2-(R¯3+)2O3-MgO-(R¯2+)O-(R¯+)2O-F (Mica) 1182.3.1.1 Alkaline Phlogopite Glass-Ceramics 1192.3.1.2 Alkali-Free Phlogopite Glass-Ceramics 1242.3.1.3 Tetrasilicic Mica Glass-Ceramic 1252.3.2 SiO2-Al2O3-MgO-CaO-ZrO2-F (Mica, Zirconia) 1262.3.3 SiO2-CaO-R2O-F (Canasite) 1282.3.4 SiO2-MgO-CaO-(R¯+)2O-F (Amphibole) 1322.4 Silicophosphates 1362.4.1 SiO2-CaO-Na2O-P2O5 (Apatite) 1362.4.2 SiO2-MgO-CaO-P2O5-F (Apatite,Wollastonite) 1372.4.3 SiO2-MgO-Na2O-K2O-CaO-P2O5 (Apatite) 1382.4.4 SiO2-Al2O3-MgO-CaO-Na2O-K2O-P2O5-F (Mica, Apatite) 1392.4.5 SiO2-MgO-CaO-TiO2-P2O5 (Apatite, Magnesium Titanate) 1432.4.6 SiO2-Al2O3-CaO-Na2O-K2O-P2O5-F (Needlelike Apatite) 1442.4.6.1 Formation of Needlelike Apatite as a Parallel Reaction to Rhenanite 1472.4.6.2 Formation of Needlelike Apatite from Disordered Spherical Fluoroapatite 1512.4.7 SiO2-Al2O3-CaO-Na2O-K2O-P2O5-F/Y2O3, B2O3 (Apatite and Leucite) 1522.4.7.1 Fluoroapatite and Leucite 1522.4.7.2 Silicate Oxyapatite and Leucite 1532.4.8 SiO2-CaO-Na2O-P2O5-F (Rhenanite) 1562.5 Iron Silicates 1582.5.1 SiO2-Fe2O3-CaO 1582.5.2 SiO2-Al2O3-FeO-Fe2O3-K2O (Mica, Ferrite) 1592.5.3 SiO2-Al2O3-Fe2O3-(R+)2O-(R¯2+)O (Basalt) 1602.6 Phosphates 1632.6.1 P2O5-CaO (Metaphosphates) 1632.6.2 P2O5-CaO-TiO2 1662.6.3 P2O5-Na2O-BaO and P2O5-TiO2-WO3 1672.6.3.1 P2O5-Na2O-BaO System 1672.6.3.2 P2O3-TiO2-WO3 System 1672.6.4 P2O5-Al2O3-CaO (Apatite) 1672.6.5 P2O5-B2O3-SiO2 1692.6.6 P2O5-SiO2-Li2O-ZrO2 1702.6.6.1 Glass-Ceramics Containing 16 wt% ZrO2 1712.6.6.2 Glass-Ceramics Containing 20 wt% ZrO2 1712.6.7 P2O5-FeO-Na2O (Pyrophosphate) 1742.7 Ion Exchange in Glass-Ceramics 1742.8 Rare Earth-Doped Light-Transmitting Glass-Ceramics 1862.8.1 Ce:YAG Glass-Ceramics for White LEDs 1862.8.2 Eu, Dy:SrAl2O4 Transparent Glass-Ceramics with Long Phosphorescence and High Brightness 1882.8.3 Eu¯2+-Activated ß-Ca2SiO4 and Ca3Si2O7 Green and Red Phosphors for White LEDs 1912.8.4 Transparent (Er,Yb)NbO4-ß-Quartz Solid Solution Glass-Ceramics 1932.9 Extension of Glass-Ceramic Systems Developed on the Basis of Multifold Nucleation and Crystallization Mechanisms 1932.9.1 Sr-apatite-Leucite/Pollucite/Rb-leucite 1942.9.1.1 Internal Nucleation and Crystallization 1942.9.1.2 Internal Mechanisms Combined with Surface Nucleation and Crystallization 1952.9.2 Lithium Disilicate-Apatite Glass-Ceramic 1972.9.3 Lithium Disilicate and Cesium Aluminosilicate Glass-Ceramics 2032.9.4 Lithium Disilicate-Diopside/Wollastonite Glass-Ceramic 2052.9.5 Lithium Disilicate-Niobate/Tantalate Glass-Ceramic 2072.9.6 Quartz-Lithium Disilicate Glass-Ceramic 2072.9.7 Transparent Glass-Ceramics Based on Lithium Disilicate and Petalite 2092.10 Other Systems 2102.10.1 Perovskite-Type Glass-Ceramics 2102.10.1.1 SiO2-Nb2O5-Na2O-(BaO) 2102.10.1.2 SiO2-Al2O3-TiO2-PbO 2112.10.1.3 SiO2-Al2O3-K2O-Ta2O5-Nb2O5 2122.10.2 SiO2-B2O3-TiO2-La2O3 System 2132.10.3 Transparent and Highly Crystalline BaAl4O7 Glass-Ceramics 2132.10.4 Chalcogenide Glass-Ceramics 2142.10.5 Ilmenite-Type (SiO2-Al2O3-Li2O-Ta2O5) Glass-Ceramics 2142.10.6 B2O3-BaFe12O19 (Barium Hexaferrite) or (BaFe10O15) Barium Ferrite 2142.10.7 SiO2-Al2O3-BaO-TiO2 (Barium Titanate) 2152.10.8 Bi2O3-SrO-CaO-CuO 2163 Microstructure Control 2173.1 Solid State Reactions 2173.1.1 Isochemical Phase Transformation 2173.1.2 Reactions Between Phases 2183.1.3 Exsolution 2183.1.4 Use of Phase Diagrams to Predict Glass-Ceramic Assemblages 2183.2 Microstructure Design 2193.2.1 Nanocrystalline Microstructures 2193.2.2 Cellular Membrane Microstructures 2213.2.3 Coast-and-Island Microstructure 2223.2.4 Dendritic Microstructures 2253.2.5 Relict Microstructures 2273.2.6 House-of-Cards Microstructures 2283.2.6.1 Nucleation Reactions 2293.2.6.2 Primary Crystal Formation and Mica Precipitation 2293.2.7 Cabbage-Head Microstructures 2293.2.8 Acicular Interlocking Microstructures 2353.2.9 Lamellar Twinned Microstructures 2373.2.10 Preferred Crystal Orientation 2383.2.11 Crystal Network Microstructures 2403.2.12 Nature as an Example 2423.2.13 Nanocrystals 2423.3 Control of Key Properties 2433.3.1 General 2433.3.2 Multifold Nucleation and Crystallization 2453.3.2.1 Control of Mechanical and Thermal Properties 2453.3.2.2 Control of Optical and Thermal Properties 2453.3.2.3 Control of Mechanical and Optical Properties 2463.3.2.4 Control of Mechanical and Magnetic Properties 2463.3.2.5 Control of Biological and Mechanical Properties 2463.4 Methods and Measurements 2463.4.1 Chemical System and Crystalline Phases 2463.4.2 Determination of Crystal Phases 2473.4.3 Kinetic Process of Crystal Formation 2493.4.4 Determination of Microstructure 2523.4.5 Mechanical, Optical, Electrical, Chemical, and Biological Properties 2523.4.5.1 Optical Properties and Chemical Composition of Glass-Ceramics 2543.4.5.2 Mechanical Properties and Microstructure of Glass-Ceramics 2543.4.5.3 Electrical Properties 2563.4.5.4 Chemical Properties 2563.4.5.5 Biological Properties 2574 Applications of Glass-Ceramics 2594.1 Technical Applications 2594.1.1 Radomes 2594.1.2 Photosensitive and Etched Patterned Materials 2594.1.2.1 Fotoform® and Fotoceram® 2594.1.2.2 Foturan® 2624.1.2.3 Additional Products 2654.1.3 Machinable Glass-Ceramics 2654.1.3.1 MACOR®and DICOR® 2654.1.3.2 Vitronit(TM) 2684.1.3.3 Photoveel(TM) 2694.1.4 Magnetic Memory Disk Substrates 2694.1.5 Liquid Crystal Displays 2734.2 Consumer Applications 2734.2.1 ß-Spodumene Solid-Solution Glass-Ceramic 2734.2.2 ß-Quartz Solid-Solution Glass-Ceramic 2744.3 Optical Applications 2794.3.1 Telescope Mirrors 2794.3.1.1 Requirements for Their Development 2794.3.1.2 Zerodur® Glass-Ceramics 2794.3.2 Integrated Lens Arrays 2814.3.3 Applications for Luminescent Glass-Ceramics 2834.3.3.1 Cr-Doped Mullite for Solar Concentrators 2834.3.3.2 Cr-Doped Gahnite Spinel for Tunable Lasers and Optical Memory Media 2864.3.3.3 Rare-Earth Doped Oxyfluorides for Amplification, Upconversion, and Quantum Cutting 2874.3.3.4 Chromium (Cr¯4+)-Doped Forsterite, ß-Willemite, and Other Orthosilicates for Broad Wavelength Amplification 2934.3.3.5 Ni¯2+-Doped Gallate Spinel for Amplification and Broadband Infrared Sources 2954.3.3.6 YAG Glass-Ceramic Phosphor for White LED 3004.3.4 Optical Components 3004.3.4.1 Glass-Ceramics for Fiber Bragg Grating Athermalization 3004.3.4.2 Laser-Induced Crystallization for Optical Gratings andWaveguides 3064.3.4.3 Glass-Ceramic Ferrule for Optical Connectors 3074.3.4.4 Applications for Transparent ZnO Glass-Ceramics with Controlled Infrared Absorbance and Microwave Susceptibility 3084.4 Medical and Dental Glass-Ceramics 3094.4.1 Glass-Ceramics for Medical Applications 3104.4.1.1 CERABONE® 3104.4.1.2 CERAVITAL® 3114.4.1.3 BIOVERIT® 3124.4.2 Glass-Ceramics for Dental Restoration 3134.4.2.1 Moldable Glass-Ceramics for Metal-Free Dental Restorations 3144.4.2.2 Machinable Glass-Ceramics 3244.4.2.3 Fusion of Glass-Ceramics on High Toughness Sintered Ceramics 3324.4.2.4 Leucite-Apatite Glass-ceramic on Metal Frameworks and Metal-Free Restorations 3354.5 Electrical and Electronic Applications 3394.5.1 Insulators 3394.5.2 Electronic Packaging 3404.5.2.1 Requirements for Their Development 3404.5.2.2 Properties and Processing 3414.5.2.3 Applications 3424.5.3 Dielectric Glass-Ceramics for GHz Electronics 3434.6 Architectural Applications 3454.7 Coatings and Solders 3474.8 Glass-Ceramics for Energy Applications 3484.8.1 Glass-Ceramic Components for Batteries 3494.8.1.1 Glass-Ceramics as Cathodes for Lithium or Sodium Ion Batteries and Glass as Anodes 3494.8.1.2 Electrolytes 3494.8.2 Joining Materials for Solid Oxide Fuel Cell Components 3504.9 Application of Glass-Ceramic Principle to Functional Materials 3524.10 Forming Processes for Glass-Ceramics 3524.10.1 Pressing 3524.10.2 Casting 3534.10.3 Spinning (Centrifugal Casting) 3534.10.4 Rolling 3544.10.5 Float Process 3544.10.6 Direct Forming or Reforming of Glass-Ceramics 3575 Future Directions 358Appendix A: Twenty-one Figures of 23 Crystal Structures 360References 381Index 415
WOLFRAM HÖLAND is retired from Ivoclar Vivadent AG (Liechtenstein) since 2016 but he is a consultant for this company. In 2018, he finished his activity as a Lecturer at the Department of Inorganic Chemistry, Eidgenössische Technische Hochschule (ETH) in Zürich, Switzerland.GEORGE H. BEALL, PHD, is a Corporate Fellow, retired, in the Science and Technology Division of Corning Incorporated, Corning, New York. He is a Distinguished Life Member of the American Ceramic Society.Between them, Drs. Höland and Beall hold over 200 US patents, over 200 publications, and 10 textbooks.
1997-2024 DolnySlask.com Agencja Internetowa