• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Geodesic Beams in Eigenfunction Analysis » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Geodesic Beams in Eigenfunction Analysis

ISBN-13: 9783031315855 / Angielski

Yaiza Canzani; Jeffrey Galkowski
Geodesic Beams in Eigenfunction Analysis Yaiza Canzani Jeffrey Galkowski 9783031315855 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Geodesic Beams in Eigenfunction Analysis

ISBN-13: 9783031315855 / Angielski

Yaiza Canzani; Jeffrey Galkowski
cena 342,95 zł
(netto: 326,62 VAT:  5%)

Najniższa cena z 30 dni: 308,41 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania

This book discusses the modern theory of Laplace eigenfunctions through the lens of a new tool called geodesic beams. The authors provide a brief introduction to the theory of Laplace eigenfunctions followed by an accessible treatment of geodesic beans and their applications to sup norm estimates, L^p estimates,  averages, and Weyl laws.  Geodesic beams have proven to be a valuable tool in the study of Laplace eigenfunctions, but their treatment is currently spread through a variety of rather technical papers. The authors present a treatment of these tools that is accessible to a wider audience of mathematicians. Readers will gain an introduction to geodesic beams and the modern theory of Laplace eigenfunctions, which will enable them to understand the cutting edge aspects of this theory. The authors developed a framework in which an eigenfunction is decomposed as a sum of what are called geodesic beams near the pointx. In broad terms, a geodesic beam is a piece of an eigenfunction that has been localized to a segment of geodesic that runs throughx. This localization is accomplished using semiclassical analysis. Remarkably, this framework allows for the treatment of several problems related to eigenfunction concentration, including estimates for their norms, averages over submanifolds, and remainders in both pointwise and integrated Weyl laws.

This book discusses the modern theory of Laplace eigenfunctions through the lens of a new tool called geodesic beams. The authors provide a brief introduction to the theory of Laplace eigenfunctions followed by an accessible treatment of geodesic beans and their applications to sup norm estimates, L^p estimates,  averages, and Weyl laws.  Geodesic beams have proven to be a valuable tool in the study of Laplace eigenfunctions, but their treatment is currently spread through a variety of rather technical papers. The authors present a treatment of these tools that is accessible to a wider audience of mathematicians. Readers will gain an introduction to geodesic beams and the modern theory of Laplace eigenfunctions, which will enable them to understand the cutting edge aspects of this theory. The authors developed a framework in which an eigenfunction is decomposed as a sum of what are called geodesic beams near the point x. In broad terms, a geodesic beam is a piece of an eigenfunction that has been localized to a segment of geodesic that runs through x. This localization is accomplished using semiclassical analysis. Remarkably, this framework allows for the treatment of several problems related to eigenfunction concentration, including estimates for their norms, averages over submanifolds, and remainders in both pointwise and integrated Weyl laws.

Kategorie:
Nauka, Fizyka
Kategorie BISAC:
Science > Fizyka matematyczna
Science > Fizyka kwantowa
Mathematics > Matematyka
Wydawca:
Springer
Seria wydawnicza:
Synthesis Lectures on Mathematics & Statistics
Język:
Angielski
ISBN-13:
9783031315855

Introduction.- The Laplace operator.- Axiomatic introduction to semiclassical analysis.- Basic properties of eigenfunctions and eigenvalues.- The Koch–Tataru–Zworski approach to L∞ estimates.- Geodesic Beam Tools.- Applications of the geodesic beam decomposition.- Dynamical ideas.

Yaiza Canzani, Ph.D., is Associate Professor in the Department of Mathematics at the University of North Carolina at Chapel Hill. She received her Ph.D. in Mathematics at McGill University. After graduating, Dr. Canzani held postdoctoral positions at Harvard University and the Institute for Advanced Study. Her work has been recognized with a Sloan Fellowship, an NSF CAREER grant, and the AWM Sadosky Prize in Analysis.

Jeffrey Galkowski, Ph.D., is Professor in the Department of Mathematics at University College London. He received his Ph.D. in Mathematics at University of California at Berkeley. Dr. Galkowski held a NSF Postdoctoral Fellowship at Stanford University and the CRM-ISM postdoctoral fellowship at McGill University. His work has been recognized with an EPSRC early career fellowship as well as the Adams Prize in Mathematics from the University of Cambridge.

This book discusses the modern theory of Laplace eigenfunctions through the lens of a new tool called geodesic beams. The authors provide a brief introduction to the theory of Laplace eigenfunctions followed by an accessible treatment of geodesic beams and their applications to sup norm estimates, L^p estimates,  averages, and Weyl laws. Geodesic beams have proven to be a valuable tool in the study of Laplace eigenfunctions, but their treatment is currently spread through a variety of rather technical papers. The authors present a treatment of these tools that is accessible to a wider audience of mathematicians. Readers will gain an introduction to geodesic beams and the modern theory of Laplace eigenfunctions, which will enable them to understand the cutting edge aspects of this theory.

This book:

  • Reviews several physical phenomena related to Laplace eigenfunctions, ranging from the propagation of waves to the location of quantum particles;
  • Introduces the cutting edge theory and microlocal methods of geodesic beams;
  • Discusses how eigenfunctions of the Laplacian play a crucial role both in physics and mathematics.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia