• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Fuzzy Model Identification: Selected Approaches » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Fuzzy Model Identification: Selected Approaches

ISBN-13: 9783540627210 / Angielski / Miękka / 1997 / 319 str.

H. Hellendoorn; D. Driankov; Dimiter Driankov
Fuzzy Model Identification: Selected Approaches Hellendoorn, Hans 9783540627210 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Fuzzy Model Identification: Selected Approaches

ISBN-13: 9783540627210 / Angielski / Miękka / 1997 / 319 str.

H. Hellendoorn; D. Driankov; Dimiter Driankov
cena 200,77
(netto: 191,21 VAT:  5%)

Najniższa cena z 30 dni: 192,74
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

During the past few years two principally different approaches to the design of fuzzy controllers have emerged: heuristics-based design and model-based design. The main motivation for the heuristics-based design is given by the fact that many industrial processes are still controlled in one of the following two ways: - The process is controlled manually by an experienced operator. - The process is controlled by an automatic control system which needs manual, on-line 'trimming' of its parameters by an experienced operator. In both cases it is enough to translate in terms of a set of fuzzy if-then rules the operator's manual control algorithm or manual on-line 'trimming' strategy in order to obtain an equally good, or even better, wholly automatic fuzzy control system. This implies that the design of a fuzzy controller can only be done after a manual control algorithm or trimming strategy exists. It is admitted in the literature on fuzzy control that the heuristics-based approach to the design of fuzzy controllers is very difficult to apply to multiple-inputjmultiple-output control problems which represent the largest part of challenging industrial process control applications. Furthermore, the heuristics-based design lacks systematic and formally verifiable tuning tech niques. Also, studies of the stability, performance, and robustness of a closed loop system incorporating a heuristics-based fuzzy controller can only be done via extensive simulations."

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Technology & Engineering > Robotics
Computers > Computer Simulation
Computers > Hardware - General
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9783540627210
Rok wydania:
1997
Wydanie:
Softcover Repri
Ilość stron:
319
Waga:
0.51 kg
Wymiary:
23.57 x 15.75 x 2.01
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

General Overview.- Fuzzy Identification from a Grey Box Modeling Point of View.- 1. Introduction.- 2. System Identification.- 3. Fuzzy Modeling Framework.- 4. Fuzzy Identification Based on Prior Knowledge.- 5. Example — Tank Level Modeling.- 6. Practical Aspects.- 7. Conclusions and Future Work.- References.- Clustering Methods.- Constructing Fuzzy Models by Product Space Clustering.- 1. Introduction.- 2. Overview of Fuzzy Models.- 3. Structure Selection for Modeling of Dynamic Systems.- 4. Fuzzy Clustering.- 5. Deriving Takagi-Sugeno Fuzzy Models.- 6. Example: pH Neutralization.- 7. Practical Considerations and Concluding Remarks.- A. The Gustafson-Kessel Algorithm — MATLAB Implementation.- References.- Identification of Takagi-Sugeno Fuzzy Models via Clustering and Hough Transform.- 1. Introduction.- 2. The Identification Method.- 3. Example 1.- 4. Example 2.- 5. Summary of the Identification Procedure.- 6. Practical Considerations and Concluding Remarks.- References.- Rapid Prototyping of Fuzzy Models Based on Hierarchical Clustering.- 1. Introduction.- 2. The Fuzzy C-Means Algorithm.- 3. Using Hierarchical Clustering to Preprocess Data.- 4. Rapid Prototyping of Approximative Fuzzy Models.- 5. Rapid Prototyping of Descriptive Fuzzy Models.- 6. Examples.- 7. Practical Considerations and Concluding Remarks.- A. Proofs of Propositions.- References.- Neural Networks.- Fuzzy Identification Using Methods of Intelligent Data Analysis.- 1. Introduction.- 2. Neuro-Fuzzy Methods.- 3. Density Estimation.- 4. Fuzzy Clustering.- 5. Conclusion.- A. From Rules to Networks.- B. Learning Rule for RBF Networks.- C.Update Equations for Gaussian Mixtures.- D. Adaptation Algorithm for Fuzzy Clustering.- References.- Identification of Singleton Fuzzy Models via Fuzzy Hyperrectangular Composite NN.- 1. Introduction.- 2. Classification of Fuzzy Models.- 3. Fuzzy Neural Networks.- 4. Identification of Singleton Fuzzy Models.- 5. Simulation Results.- 6. Practical Considerations and Concluding Remarks.- References.- Genetic Algorithms.- Identification of Linguistic Fuzzy Models by Means of Genetic Algorithms.- 1. Introduction.- 2. Evolutionary Algorithms and Genetic Fuzzy Systems.- 3. The Fuzzy Model Identification Problem.- 4. The Genetic Fuzzy Identification Method.- 5. Example.- 6. Practical Considerations and Concluding Remarks.- References.- Optimization of Fuzzy Models by Global Numeric Optimization.- 1. Introduction.- 2. Theoretical Aspects of Fuzzy Models.- 3. The Fuzzy Identification Method.- 4. Simulation Results.- 5. Practical Aspects.- References.- Artificial Intelligence.- Identification of Linguistic Fuzzy Models Based on Learning.- 1. Introduction.- 2. Basic Concepts and Notation.- 3. The Identification Problem.- 4. The Fuzzy Identification Method.- 5. Numeric Examples.- 6. Practical Aspects and Concluding Remarks.- References.

This carefully edited volume presents a collection of recent works in fuzzy model identification. It opens the field of fuzzy identification to conventional control theorists as a complement to existing approaches, provides practicing control engineers with the algorithmic and practical aspects of a set of new identification techniques, and emphasizes opportunities for a more systematic and coherent theory of fuzzy identification by bringing together methods based on different techniques but aiming at the identification of the same types of fuzzy models.
In control engineering, mathematical models are often constructed, for example based on differential or difference equations or derived from physical laws without using system data (white-box models) or using data but no insight (black-box models). In this volume the authors choose a combination of these models from types of structures that are known to be flexible and successful in applications. They consider Mamdani, Takagi-Sugeno, and singleton models, employing such identification methods as clustering, neural networks, genetic algorithms, and classical learning.
All authors use the same notation and terminology, and each describes the model to be identified and the identification technique with algorithms that will help the reader to apply the presented methods in his or her own environment to solve real-world problems. Furthermore, each author gives a practical example to show how the presented method works, and deals with the issues of prior knowledge, model complexity, robustness of the identification method, and real-world applications.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia