'The book has been thoughtfully written with students in mind, and contains plenty of pointers to the literature for those who want to pursue a subject further. Readers will find themselves taken on an engaging journey by a true expert in the field, who brings to the material both insight and style.' Daniel Dugger, MathSciNet (https://mathscinet.ams.org)
Introduction; Part I. Category Theory: 1. Basic notions in category theory; 2. Natural transformations and the Yoneda lemma; 3. Colimits and limits; 4. Kan extensions; 5. Comma categories and the Grothendieck construction; 6. Monads and comonads; 7. Abelian categories; 8. Symmetric monoidal categories; 9. Enriched categories; Part II. From Categories to Homotopy Theory: 10. Simplicial objects; 11. The nerve and the classifying space of a small category; 12. A brief introduction to operads; 13. Classifying spaces of symmetric monoidal categories; 14. Approaches to iterated loop spaces via diagram categories; 15. Functor homology; 16. Homology and cohomology of small categories; References; Index.