• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Electronic Materials: From Silicon to Organics » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2950560]
• Literatura piękna
 [1849509]

  więcej...
• Turystyka
 [71097]
• Informatyka
 [151150]
• Komiksy
 [35848]
• Encyklopedie
 [23178]
• Dziecięca
 [617388]
• Hobby
 [139064]
• AudioBooki
 [1657]
• Literatura faktu
 [228597]
• Muzyka CD
 [383]
• Słowniki
 [2855]
• Inne
 [445295]
• Kalendarze
 [1464]
• Podręczniki
 [167547]
• Poradniki
 [480102]
• Religia
 [510749]
• Czasopisma
 [516]
• Sport
 [61293]
• Sztuka
 [243352]
• CD, DVD, Video
 [3414]
• Technologie
 [219456]
• Zdrowie
 [101002]
• Książkowe Klimaty
 [124]
• Zabawki
 [2311]
• Puzzle, gry
 [3459]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8079]
Kategorie szczegółowe BISAC

Electronic Materials: From Silicon to Organics

ISBN-13: 9781461367031 / Angielski / Miękka / 2012 / 542 str.

L. S. Miller; J. B. Mullin
Electronic Materials: From Silicon to Organics Miller, L. S. 9781461367031 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Electronic Materials: From Silicon to Organics

ISBN-13: 9781461367031 / Angielski / Miękka / 2012 / 542 str.

L. S. Miller; J. B. Mullin
cena 201,24
(netto: 191,66 VAT:  5%)

Najniższa cena z 30 dni: 192,74
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

Electronic materials are a dominant factor in many areas of modern technology. The need to understand'them is paramount; this book addresses that need. The main aim of this volume is to provide a broad unified view of electronic materials, including key aspects of their science and technology and also, in many cases, their commercial implications. It was considered important that much of the contents of such an overview should be intelligible by a broad audience of graduates and industrial scientists, and relevant to advanced undergraduate studies. It should also be up to date and even looking forward to the future. Although more extensive, and written specifically as a text, the resulting book has much in common with a short course of the same name given at Coventry Polytechnic. The interpretation of the term "electronic materials" used in this volume is a very broad one, in line with the initial aim. The principal restriction is that, with one or two minor exceptions relating to aspects of device processing, for example, the materials dealt with are all active materials. Materials such as simple insulators or simple conductors, playing only a passive role, are not singled out for consider- ation. Active materials might be defined as those involved in the processing of signals in a way that depends crucially on some specific property of those materials, and the immediate question then concerns the types of signals that might be considered.

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Electronics - General
Technology & Engineering > Electrical
Technology & Engineering > Materials Science - Electronic Materials
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9781461367031
Rok wydania:
2012
Wydanie:
Softcover Repri
Ilość stron:
542
Waga:
0.97 kg
Wymiary:
24.4 x 17.0
Oprawa:
Miękka
Wolumenów:
01

1 Structures of and Bonding in Electronic Materials.- 1. Introduction.- 2. The Structure of the Group IV Elements and of III-V and II-VI Semiconductors.- 3. Bonding in and Relationships Between Zinc Blende and Wurtzite-Type Compounds.- 4. Other Structure Types.- References.- 2 Electron Energy Bands.- 1. Introduction.- 2. Models.- 2.1. The Nearly Free Electron Model.- 2.2. The Tight-Binding Model.- 2.3. The Relationship Between the Results of the Two Models.- 2.4. The Relationship Between Maximum Energy and k.- 2.5. Three-Dimensional Effects.- 2.6. Real Materials.- 3. Effective Mass.- 4. Positive Holes.- 5. Methods of Computing Band Structure.- 6. Conductance, the Octet Rule, and Bands.- 7. Postscript: The Kronig-Penney Model.- References.- 3 Electrical Properties of Semiconductors.- 1. Introduction.- 2. Intrinsic Semiconductors.- 3. Extrinsic Semiconductors.- 4. Scattering and Mobility of Charge Carriers.- 5. High-Field Effects.- 4 Optical Properties.- 1. Introduction.- 2. The Classical Approach.- 2.1. Relation to Conductivity.- 2.2. Optical Constants and Relative Permittivity.- 2.3. Resonance.- 3. Absorption Mechanisms.- 3.1. Fundamental Absorption.- 3.2. Other Mechanisms.- 4. Photoconductivity.- 5. Emission.- 5.1. Spontaneous Emission.- 5.2. Stimulated Emission.- 5.3. Nonradiative Recombination.- 6. Anisotropic Materials.- 7. Polarized Light.- 8. Thin-Film Systems.- 5 Interfaces and Low-Dimensional Structures.- 1. Introduction.- 2. Band Structure at a Heterojunction Interface.- 3. Low-Dimensional Effects.- 4. New Effects in Low-Dimensional Structures.- 5. Materials Growth.- 6. Other Low-Dimensional Structures.- 7. Applications.- 8. Conclusions.- References.- 6 Key Electrical Devices.- 1. Introduction.- 2. Basic Semiconductor Diodes.- 2.1. The p-n Junction Diode.- 2.2. The Metal-Semiconductor or Schottky Diode.- 2.3. Ohmic Contacts.- 3. Bipolar Junction Transisistors.- 4. Field Effect Transistors.- 4.1. MOSFETs.- 4.2. JFETs and MESFETs.- 5. Materials for Electronic Devices: The Significance of Silicon.- 6. Gallium-Arsenide-Based Transistors.- 6.1. The GaAs MESFET.- 6.2. Heterojunction-Based Devices.- 7. Other Materials.- 8. Conclusions and Future Prospects.- References.- 7 Key Optoelectronic Devices.- 1. Introduction.- 2. Materials Technologies.- 2.1. Important Optoelectronic Materials.- 2.2. Epitaxy.- 3. Light-Emitting Devices.- 3.1. Basic Principles.- 3.2. Light-Emitting Diodes (LEDs).- 3.3. Semiconductor Lasers.- 4. Optical Detectors.- 5. Waveguide Components.- 6. Optoelectronic Integrated Circuits.- 7. Conclusions.- 8 Thermodynamics and Defect Chemistry of Compound Semiconductors.- 1. Introduction.- 2. Elements of Multicomponent Phase Equilibria.- 2.1. Gibbs’s Phase Rule.- 2.2. Pressure-Temperature Equilibrium.- 2.3. Solid-Liquid Equilibria in Multicomponent Systems.- 2.4. Representation of the Activity Coefficients.- 3. Solid-Liquid Phase Equilibria in Ternary III-V Compounds...- 4. Solid-Gas Phase Equilibria in Multicomponent III-V compounds.- 5. Native Point Defects in Compound Semiconductors.- 6. The Incorporation of Solute (Dopant) Atoms.- 7. Summary and Conclusions.- References.- 9 Single Crystal Growth I: Melt Growth.- 1. Introduction: General Principles.- 2. Role of Melt Growth.- 3. Constraints to Melt Growth.- 3.1. Chemical Reactivity.- 3.2. Vapor Pressure.- 3.3. Mechanical.- 3.4. Fundamental.- 4. Techniques of Melt Growth.- 4.1. Vertical Pulling or Czochralski Growth.- 4.2. Float Zone.- 4.3. Horizontal Bridgman.- 4.4 Liquid Encapsulation.- 5. Fundamentals.- References.- 10 Single Crystal Growth II: Epitaxial Growth.- 1. Introduction: General Principles.- 2. Role of Epitaxy.- 3. Constraints to Epitaxial Growth.- 3.1. Liquid Phase Epitaxy (LPE).- 3.2. Vapor Phase Epitaxy (VPE).- 4. Techniques of Epitaxial Growth.- 4.1. Liquid Phase Epitaxy.- 4.2. Vapor Phase Epitaxy: Conventional Inorganic Epitaxy.- 4.3. Molecular Beam Epitaxy (MBE): Metalorganic Molecular Beam Epitaxy (MOMBE).- 4.4. Metalorganic Vapor Phase Epitaxy (MOVPE).- 4.5. Photolytic Metalorganic Vapor Phase Epitaxy (Photo-MOVPE).- References.- 11 Amorphous Silicon-Electronics into the Twenty-First Century.- 1. Introduction.- 2. Amorphous Materials.- 3. Doping of a-Si.- 4. Applications of a-Si.- 4.1. Photovoltaic Cells.- 4.2. Flat Screen Televisions and Displays.- 4.3. High-Voltage Thin-Film Transistors.- 4.4. Electrophotography.- 4.5. Image Sensors.- 5. Conclusions.- References.- 12 Control of Semiconductor Conductivity by Doping.- 1. Introduction.- 2. Diffusion.- 2.1. Constant Diffusivity.- 2.2. Nonconstant Diffusivity.- 2.3. Diffusion Techniques.- 2.4. Deviations from Simple Diffusion Theory.- 3. Ion Implantation.- 4. Transmutation Doping.- 5. Crystal Growth and Zone Processes.- 6. Epitaxial Processes.- 7. Stoichiometric Changes in Compound Semiconductors.- References.- 13 Silicon Processing: CMOS Technology.- 1. Introduction.- 2. Circuit Designs, Masks, and Pattern Printing.- 3. Silicon Wafer Quality.- 4. Epitaxial Silicon Substrates.- 5. Device Scaling.- 6. CMOS Process Flow.- 7. Device Isolation and n-Well Doping.- 8. Gate Oxidation and Gate Conductor Formation.- 9. Source-Drain Formation and Silicidation.- 10. Multi-layer Metallization.- 11. BICMOS.- 12. Silicon on Insulator.- 13. Latch-up in CMOS.- 14. Chip Packaging.- References.- 14 Technologies for High-Speed Compound Semiconductor ICs.- 1. Introduction.- 2. The Material Choice for Active Devices.- 3. Circuit-Building Elements.- 3.1. Capacitors.- 3.2. Inductors.- 3.3. Resistors.- 3.4. Airbridges and Dielectrically Isolated Interconnections.- 3.5. Via Hole Technology.- 3.6. The Integration Process.- 4. IC Fabrication Processes.- 4.1. Lithography.- 4.2. Deposition Processes.- 4.3. Etching Processes.- 5. Future Trends.- References.- 15 Phosphors and Luminescence.- 1. Background.- 2. Photoluminescence.- 2.1. Phosphorescence.- 2.2. Fluorescence.- 3. Thermoluminescence.- 3.1. Phenomenon and History.- 3.2. Basic Theory.- 3.3. Interpretation of More Complex Structures.- 3.4. Applications.- 4. Electroluminescence.- 4.1. Overview.- 4.2. Basic Theory.- 4.3. Powder EL Devices.- 4.4. Thin-Film Devices.- References.- 16 Microstructural and Compositional Characterization of Thin-Film Semiconductor Materials by Transmission Electron Microscopy (TEM).- 1. Introduction.- 2. The Analysis of Structure.- 2.1. Basic Structure, Symmetry, and Lattice Parameter Measurement.- 2.2. Determination of Crystal Polarity.- 2.3. Defect Analysis.- 2.4. Detection of Long-and Short-Range Order in Alloy Systems.- 2.5. Characterization of Interfaces.- 3. Determination of Composition Changes Across Interfaces.- 4. Studies of Semiconductor Surfaces in the TEM.- 5. Specimen Preparation.- 6. Conclusion.- Acknowledgments.- References.- 17 Dielectric Properties and Materials.- 1. Introduction.- 2. Background.- 3. Bound Charge Effects.- 3.1. Experimental data.- 4. Mobile Charge Effects.- 4.1. Experimental Data.- 5. The Cluster Model of Relaxation Response.- 6. Conclusions.- References.- 18 Xerographic Photoreceptors.- 1. Introduction.- 1.1. Background.- 1.2. Generic Types.- 2. The Xerographic Process.- 2.1. Schematic.- 2.2. Electrical Requirements.- 3. The Ideal Photoreceptor.- 3.1. Operating Characteristics.- 4. Selenium Alloy Photoreceptors.- 4.1. Amorphous Selenium.- 4.2. Arsenic Tri-Selenide.- 4.3. Selenium-Tellurium.- 5. Crystalline Cadmium Sulfide.- 5.1. Cadmium Sulfide Photoreceptor.- 5.2. Market Share.- 6. Zinc Oxide Photoreceptors.- 7. Amorphous Silicon Photoreceptors.- 7.1. Amorphous Silicon.- 7.2. Manufacturing Process and Properties.- 7.3. Hydrogenated Amorphous Silicon.- 7.4. Market Share.- 8. Organic Photoreceptors (OPC).- 8.1. Manufacturing.- 8.2. Xerographic Characteristics.- 8.3. Structure.- 8.4. Market Share.- 9. Laser Reprographics.- 9.1. Operating Characteristics.- 10. Industry Trends.- 10.1 Volume.- 10.2. Technology.- 10.3. Market Share.- References.- 19 Piezoelectric and Pyroelectric Materials and Their Applications.- 1. Introduction.- 2. Piezoelectric Materials and Devices.- 3. Pyroelectric Materials and Devices.- References.- 20 Principles of Nonlinear Optical Response.- 1. Introduction.- 2. Phenomenological Description.- 3. Special Cases.- 4. Microscopic Origins.- 5. Design of Nonlinear Materials.- References.- 21 Electro-optic Materials and Applications.- 1. Introduction.- 2. Properties of Anisotropic Media.- 2.1. Optical Properties.- 2.2. Electro-optic Coefficients.- 2.3. Propagation of Light Through an Anisotropic Medium.- 3. Electro-optical Material Parameters.- 4. Applications.- 4.1. Bulk Crystals.- 4.2. Waveguides.- 5. Inorganic Materials—KDP and Lithium Niobate.- 5.1. KDP.- 5.2. Lithium Niobate.- 6. Organic Crystalline Electro-optic Materials.- 7. Polymeric Electro-optic Materials.- References.- 22 Nonlinear Waveguides.- 1. Introduction.- 1.1. Nonlinear Optics.- 2. Waveguide Structures.- 3. Materials for Nonlinear Waveguides.- 4. Nonlinear Waveguide Devices.- 4.1. Second-Order Waveguide Devices.- 4.2. Third-Order Waveguide Devices.- 5. Summary.- References.- 23 Second-Harmonic Generation.- 1. Introduction.- 2. Formulation.- 3. Electromagnetic Wave Equations in Nonlinear Media.- 4. Wave Equations for Three-Wave Mixing.- 5. Slowly Varying Amplitude Approximation.- 6. Nonlinear Equations in Component Form.- 7. Symmetry Conditions Applied to X(2).- 8. Second-Harmonic Generation.- 9. Determination of deff.- 10. Phase Matching.- 11. Generation with Focused Beams.- 12. Intracavity Second-Harmonic Generation and Resonant Enhancement.- 13. New Materials.- 14. New Areas and Future Prospects.- References.- 24 Materials for Nonlinear Optical Signal Processing.- 1. Introduction.- 2. Phase Conjugation and Optical Signal Processing.- 3. Physical Mechanisms for Producing Four-Wave Mixing.- 3.1. Temporal Response.- 4. Thermally Induced Gratings.- 5. Molecular Reorientation.- 5.1. Liquid Crystals.- 6. Photorefractive Media.- 7. Stimulated Brillouin Scattering (SBS).- 8. Conclusion.- References.- 25 The Chemistry of Liquid Crystals.- 1. Introduction.- 2. Classification and Formation of Liquid Crystals.- 3. Phase Recognition.- 3.1. The Nematic Phase.- 3.2. The Smectic Phase.- 4. Molecular Structure and Liquid Crystal Properties.- 4.1. The Effect of Terminal Groups.- 4.2. Lateral Groups.- 4.3. Linking Groups.- 4.4. Ring Systems.- 5. Relationship of Molecular Structure to Display Parameters.- 6. Chiral Liquid Crystal Phases.- 6.1. The Cholesteric Phase.- 6.2. Chiral Smectic Phases.- 7. Dichroic Dyes.- 8. Liquid Crystal Polymers.- 8.1. Applications.- 9. Conclusion.- References.- 26 Electro-optic Effects in Liquid Crystals.- 1. Introduction.- 2. The Liquid Crystal Phase.- 3. The Anisotropic Physical Properties of Liquid Crystals.- 3.1. Nematic Order Parameter.- 3.2. Electric Permittivities (?) and Refractive Indices (n).- 3.3. Nematic Continuum Theory.- 4. Liquid Crystal Alignment Properties.- 5. Freedericksz Transitions in Nematic Liquid Crystals.- 6. The Twisted Nematic Electro-optic Effect.- 7. The Supertwisted Nematic Electro-optic Effect.- 8. Ferroelectric Liquid Crystals.- References.- 27 Liquid Crystal Applications.- 1. Introduction.- 2. Twisted Nematic (TN) Liquid Crystal Displays.- 2.1. The Construction.- 2.2. Driving a Twisted Nematic Display—Multiplexing.- 2.3. Limitations of Twisted Nematic Displays.- 3. The Supertwisted Nematic Display.- 3.1. Optical Properties.- 3.2. Manufacture of STH Displays.- 3.3. Applications.- 4. Thin-Film Transistor (TFT) Liquid Crystal Displays.- 4.1. Construction of Amorphous Silicon Thin-Film Transistors.- 4.2. Driving the TFT Display.- 4.3. Polycrystalline Silicon TFT.- 4.4. Incorporating Color.- 4.5. Production of TFT Displays.- 5. Ferroelectric Displays.- 5.1. Surface Stabilized Ferroelectric LCD.- 5.2. Multiplexing SSFLCD.- 5.3. Grey Scale in SSFLCD.- 5.4. Production of Large-Area SSFLCD.- 6. The Future for Applications of Liquid Crystals.- References.- 28 High-Temperature Superconducting Materials.- 1. Introduction.- 2. Theoretical Considerations.- 2.1. BCS Theory.- 2.2. Resonating Valence Bond (RVB) Theory.- 2.3. Bipolaron Model.- 3. Recent Developments.- 3.1. Crystal Structure and Charge Carriers.- 3.2. Fabrication Methods.- 3.3. Material Properties and Processing Limitations.- 4. Applications.- References.- 29 Langmuir—Blodgett Films.- 1. Introduction.- 2. General Features and Properties of LB Films.- 2.1. Attractive Features.- 2.2. Unattractive Features.- 3. LB Film Materials.- 3.1. Monomeric Materials.- 3.2. General Comments on LB Film Materials.- 3.3. Polymeric Materials.- 4. Techniques for Investigating LB Films.- 4.1. Microscopy.- 4.2. Spectroscopic Techniques.- 4.3. Diffraction Techniques.- 4.4. Miscellaneous Techniques.- 5. Applications of LB Films.- 5.1. Nonlinear Optics.- 5.2. Chemical Sensors.- 6. Concluding Remarks.- References.- 30 Electrically Conducting Polymers.- 1. Introduction.- 2. Polyacetylene—The Archetypal Conducting Polymer.- 2.1. Structure.- 2.2. Isomerism.- 2.3. “Doping” and Conduction Mechanisms.- 2.4. Preparation and Properties.- 2.5. Processing Improvements—Polyacetylene and Related Polymers.- 2.6. Precursor Route Syntheses.- 3. Polypyrrole and the “Heteroaromatic” Polymers.- 3.1. Structure and Preparation.- 3.2. Other Monomer Systems.- 3.3. Redox Properties.- 3.4. pH-Sensitive Switching.- 4. Structural Manipulations—Heteroaromatic Polymers.- 4.1. Functional Monomers.- 4.2. Functionalized Dopants.- 4.3. Composites, Blends, and Laminates.- 5. Conclusions.- 6. Appendix: Heteroaromatic Polymers—Publication Statistics.- References.- 31 Photochromics for the Future.- 1. Introduction.- 2. Thermally Stable Photochromic Compounds.- 3. Heliochromic Compounds.- 4. Naphthopyran Derivatives.- References.- 32 Materials for Sensing Flammable and Toxic Gases.- 1. Introduction.- 2. General Requirements of Gas Sensors.- 3. Sensor Types.- 3.1. Catalytic Calorimeters.- 3.2. Semiconductor Gas Sensors.- 4. Summary.- References.- 33 Exploiting Semiconductor Oxides for Automative Exhaust Gas Oxygen Sensors.- 1. Introduction.- 2. Principles of Operation.- 2.1. Electrochemical Oxygen Sensors.- 2.2. Semiconducting Oxide Oxygen Sensors.- 3. Application of Oxygen Sensors in Automotive Exhaust Gas Sensing.- 4. Conclusions.- References.- 34 Field-Effect Chemical Sensors.- 1. Introduction.- 2. FET Sensor Types: Surface/Bulk Effects.- 2.1. FET Structure.- 2.2. Interface and Bulk Effects: Sensor Types.- 2.3. Ion-Selective Field-Effect Transistors.- 2.4. Gas-Sensitive FETs.- 2.5. Humidity-Sensitive FETs.- 3. Field-Effect Related Sensors.- 3.1. Enzyme-Modified ISFETs.- 3.2. Integrated ISFET/Coulometric Titration Sensors.- 4. Conclusion.- References.

Miller, L. S. L. S. Miller is the author of six novels to date, ... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia