ISBN-13: 9781119838258 / Angielski / Twarda / 2022 / 350 str.
ISBN-13: 9781119838258 / Angielski / Twarda / 2022 / 350 str.
Biography xixPreface xxiOrganization of the Book xxiiiAcknowledgments xxvAbout the Companion Website xxvi1 Introduction 11.1 Prologue 11.2 The Past 11.3 The Present 21.4 The Future 21.5 New Developments 31.6 Epilogue 31.7 The Electric Power System 41.8 Distribution System Devices 51.8.1 Substation Devices 61.8.1.1 Power Transformers 61.8.1.2 Switchgear 71.8.1.3 Compensating Devices 71.8.1.4 Protection Equipment 81.8.1.5 Control and Monitoring Devices 81.8.2 Primary System Components 81.8.2.1 Feeders and Laterals 91.8.2.2 Switches 91.8.2.3 Compensating Devices 101.8.2.4 Protection Equipment 101.8.2.5 Control and Monitoring Devices 111.8.2.6 Distribution Transformers 111.8.2.7 Types of Primary Systems 111.8.3 Secondary System Components 111.9 Frequently Asked Questions on Distribution Systems 12Reference 122 Distribution System Transformers 132.1 Definition 132.2 Types of Distribution Transformers 132.2.1 Overhead Transformers 132.2.2 Underground Transformers 142.3 Standards 142.3.1 Loading of Transformers 142.3.2 Types of Cooling 152.3.2.1 OA - Oil-Immersed Self-Cooled 152.3.2.2 OA/FA - Oil-Immersed Self-Cooled/Forced-Air Cooled 152.3.2.3 OA/FA/FOA - Oil-immersed Self-Cooled/Forced-Air Cooled/Forced-Oil Forced-Air Cooled 162.3.2.4 FOA - Oil-Immersed Forced-Oil Cooled with Forced-Air Cooled 162.3.2.5 OW- Oil-ImmersedWater Cooled 162.3.2.6 FOW- Oil-Immersed Forced-Oil Cooled with Forced-Water Cooled 172.3.2.7 AA - Dry-Type Self-cooled 172.3.2.8 AFA - Dry-Type Forced-Air Cooled 172.3.2.9 AA/FA - Dry-Type Self-cooled/Forced-Air Cooled 172.3.3 Terminal Markings and Polarity 172.3.4 Insulation Class 172.4 Single-Phase Transformer 182.4.1 Model for a Single-Phase Transformer 182.4.2 Performance Analysis 202.4.3 Regulation 202.4.4 Taps 212.5 Distribution Transformer Connections 212.5.1 Example 222.5.2 Parallel Operation of Three-wire Transformers 232.5.3 Single-Phase Autotransformers 252.6 Three-Phase Transformer Connections 262.6.1 Analysis of Y/Delta Transformer with Unbalanced Load 272.6.2 Analysis of Y/Y Transformer 292.6.3 Three-winding Transformer 31Problems 33References 343 Distribution Line Models 353.1 Overview 353.2 Conductor Types and Sizes 353.2.1 Sizes 353.2.2 Overhead Feeders 353.2.3 Underground Feeders 363.2.4 Conductor Data 373.3 Generalized Carson's Models 383.4 Series Impedance Models of Overhead Lines 393.4.1 Three-phase Line 393.4.2 Single- and Two-phase Line Modeling 423.4.3 Three-phase Line Example 423.5 Series Impedance Models of Underground Lines 443.5.1 Nonconcentric Neutral Cables 443.5.2 Concentric Neutral Cables 453.5.2.1 Single-phase Cable 453.5.2.2 Three-phase Cable 46Problems 49References 524 Distribution System Analysis 534.1 Introduction 534.2 Modeling of Source Impedance 534.3 Load Models 544.3.1 Load Model I 544.3.2 Load Model II 564.3.3 Load Model III 564.3.4 Load Model IV 574.4 Distributed Energy Resources (DERs) 574.5 Power Flow Studies 614.5.1 Line Model 624.5.2 Load and DER Model 634.5.3 Computing Currents 654.5.4 Power Flow Algorithm 664.6 Voltage Regulation 684.6.1 Voltage Regulation Definition 684.6.2 Approximate Method for Voltage Regulation 694.6.3 Voltage Drop on Radial Feeders with Uniformly Distributed Load 724.6.4 Voltage Drop on a Radial Feeder Serving a Triangular Area 744.7 Fault Calculations 754.7.1 Prefault System 764.7.2 Three-phase Fault 784.7.3 Double-Line-to-Ground (DLG) Fault 794.7.4 Single-Line-to-Ground (SLG) Fault 804.7.5 Line-to-Line (LL) Fault 804.7.6 Symmetrical Component-based Fault Analysis 814.7.6.1 Three-phase Fault 824.7.6.2 DLG Fault 834.7.6.3 SLG Fault 844.7.6.4 LL Fault 85Problems 86References 885 Distribution System Planning 895.1 Introduction 895.2 Traditional vs. Modern Approaches to Planning 905.3 Long-term Load Forecasting 905.4 Load Characteristics 925.4.1 Customer Classes 925.4.2 Loads in a Modern House 945.4.3 Time Aggregation 955.4.4 Diversity and Coincidence 965.4.5 Demand Factor 1015.4.6 Load Duration Curve 1015.4.7 Load Factor 1035.4.8 Loss Factor 1035.5 Design Criteria and Standards 1055.5.1 Voltage Standards 1055.5.2 Conservation Voltage Reduction 1065.6 Distribution System Design 1075.6.1 Substation Design 1075.6.2 Design of Primary Feeders 1085.6.3 Design of Secondary Systems 1115.6.4 Underground Distribution Systems 1115.6.5 Rural vs. Urban Systems 1135.7 Cold Load Pickup (CLPU) 1145.7.1 CLPU Fundamentals 1145.7.2 CLPU Models 1155.7.3 Impacts of CLPU 1165.7.4 Operating Limits 1175.8 Asset Management 117Problems 118References 1216 Economics of Distribution Systems 1236.1 Introduction 1236.2 Basic Concepts 1236.2.1 Interest Rate 1236.2.2 Inflation 1246.2.3 Discount Rate 1246.2.4 Time Value of Money 1246.2.5 Annuity 1256.2.6 PresentWorth of Annuity 1256.2.7 PresentWorth of Geometric Series 1256.3 Selection of Devices: Conductors and Transformers 1266.3.1 Distribution Feeder Conductors 1266.3.1.1 Conductor Economics 1266.3.1.2 Reach of Feeders 1296.3.1.3 Optimal Selection of Conductors for Feeders 1326.3.1.4 Example 1356.3.2 Economic Evaluation of Transformers 1366.4 Tariffs and Pricing 1386.4.1 Electricity Rates 1386.4.1.1 Energy 1386.4.1.2 Demand 1396.4.1.3 Time of Use (TOU) 1396.4.1.4 Critical Peak Pricing (CPP) 1396.4.1.5 Critical Peak Rebates (CPRs) 1396.4.1.6 Interruptible Rates 1406.4.1.7 Power Factor-Based Rates 1406.4.1.8 Real-Time Price 1406.4.1.9 Net Metering 1406.4.2 Understanding Electricity Bills 1416.4.2.1 Monthly Rate 1416.4.3 Rural Electric Cooperatives (RECs) 1426.4.4 Municipal Utilities 142Problems 143References 1467 Distribution System Operation and Automation 1477.1 Introduction 1477.2 Distribution Automation 1487.3 Communication Infrastructure 1517.4 Distribution Automation Functions 1517.4.1 Outage Management 1537.4.2 Feeder Reconfiguration 1547.4.3 Voltage and var Management 1557.4.3.1 Transformer LTC Operation 1557.4.3.2 Capacitor Operation 1567.4.3.3 Regulator Operation 1577.4.3.4 Smart Inverters 1577.4.4 Monitoring and Control 1597.4.4.1 Transformer Life Extension 1597.4.4.2 Recloser/Circuit Breaker Monitoring and Control 1607.5 Cost-Benefit of Distribution Automation 1607.5.1 Higher Energy Sales 1627.5.2 Reduced Labor for Fault Location 1627.5.3 O&M of Switches and Controllers 1627.5.4 Lesser Low-Voltage Complaints 1627.6 Cost-Benefit Case Studies 163References 1658 Analysis of Distribution System Operation Functions 1698.1 Introduction 1698.2 Outage Management 1698.2.1 Trouble Call Analysis 1718.2.1.1 Outage Location Using Escalation Methods 1728.2.1.2 Rule-Based Escalation 1738.2.1.3 Test Cases 1758.3 Voltage and var Control 1788.3.1 Load Tap Changer 1788.3.2 Line Regulators 1798.3.3 Capacitors 1798.3.4 Capacitor Placement 1808.3.4.1 Illustrative Example 1818.3.5 Capacitor Switching and Control 1858.4 Distribution System Reconfiguration 1858.4.1 Multiobjective Reconfiguration Problem 1858.4.1.1 Minimization of Real Loss 1868.4.1.2 Transformer Load Balancing 1868.4.1.3 Minimization of Voltage Deviation 1878.4.2 Illustrative Example 1878.5 Distribution System Restoration 1888.5.1 Step-by-Step Restoration 1898.5.2 Restoration Times 1918.5.3 Derivation of Restoration Times 1928.5.4 Optimal Operation and Design for Restoration During CLPU 1938.5.4.1 Thermally Limited System 1938.5.4.2 Voltage Drop Limited System 194References 1959 Distribution System Reliability 1979.1 Motivation 1979.2 Basic Definitions 1989.3 Reliability Indices 2019.3.1 Basic Parameters 2019.3.2 Sustained Interruption Indices 2029.3.2.1 System Average Interruption Frequency Index (SAIFI) 2029.3.2.2 System Average Interruption Duration Index (SAIDI) 2029.3.2.3 Customer Average Interruption Duration Index (CAIDI) 2039.3.2.4 Customer Total Average Interruption Duration Index (CTAIDI) 2039.3.2.5 Customer Average Interruption Frequency Index (CAIFI) 2039.3.2.6 Average Service Availability Index (ASAI) 2039.3.2.7 Customers Experiencing Multiple Interruptions (CEMIn) 2049.3.2.8 Customers Experiencing Long Interruption Durations (CELID) 2049.3.3 Load-based Indices 2049.3.3.1 Average System Interruption Frequency Index (ASIFI) 2049.3.3.2 Average System Interruption Duration Index (ASIDI) 2059.3.4 Momentary Interruption Indices 2059.3.4.1 Momentary Average Interruption Frequency Index (MAIFI) 2059.3.4.2 The Momentary Average Interruption Event Frequency Index (MAIFIE) 2059.3.4.3 Customers Experiencing Multiple Sustained Interruption and Momentary Interruption Events Index (CEMSMIn) 2059.3.5 Sustained Interruption Example 2069.3.6 Momentary Interruption Example 2089.4 Major Event Day Classification 2099.5 Causes of Outages 2109.5.1 Trees 2119.5.2 Lightning 2119.5.3 Wind 2129.5.4 Icing 2139.5.5 Animals/Birds 2139.5.6 Vehicular Traffic 2149.5.7 Age of Components 2149.5.8 Conductor Size 2149.6 Outage Recording 2149.7 Predictive Reliability Assessment 2169.7.1 Component Failure Models 2169.7.2 Network Reduction 2179.7.3 Markov Modeling 2199.7.4 Failure Modes and Effects Analysis (FMEA) 2239.7.4.1 FMEA Method Assumptions 2239.7.4.2 FMEA Procedure 2239.7.5 Monte Carlo Simulation 2259.8 Regulation of Reliability 226Problems 227References 22910 Distribution System Grounding 23110.1 Basics of Grounding 23110.1.1 Need for Grounding 23110.1.2 Approaches for Grounding 23110.1.3 Effects of Grounding on System Models 23310.2 Neutral Grounding 23310.2.1 Neutral Shift Due to Ground Faults 23310.2.2 Types of Neutral Grounding 23410.2.3 Standards for Neutral Grounding 23410.3 Substation Safety 23410.4 National Electric Safety Code (NESC) 23610.5 National Electric Code (NEC) 236References 23811 Distribution System Protection 23911.1 Overview and Philosophy 23911.2 Role of Protection Studies 24011.3 Protection of Power-carrying Devices 24111.4 Classification of Protective and Switching Devices 24111.4.1 Single-action Fuses 24111.4.1.1 Expulsion Fuses 24211.4.1.2 Vacuum Fuses 24311.4.1.3 Current-limiting Fuses 24311.4.1.4 Distribution Fuse Cutouts 24411.4.2 Automatic Circuit Reclosers 24411.4.2.1 Recloser Classifications 24711.4.3 Sectionalizers 24711.4.4 Circuit Breakers 24911.4.5 Time Overcurrent Relays 25011.4.6 Static or Solid-state Relays 25411.4.7 Digital or Numerical Relays 25411.4.8 Load Break Switch 25511.4.9 Circuit Interrupter 25511.4.10 Disconnecting Switch 25511.4.11 Sectionalizing Switch 25511.4.12 Example Distribution System 25511.5 New Generation of Devices 25611.5.1 Smart Switching Devices 25611.5.1.1 Smart Fuses 25711.5.1.2 Smart Reclosers (Interrupters) 25711.5.1.3 Smart Circuit Breakers 25711.6 Basic Rules of Classical Distribution Protection 25711.6.1 Operational Convention for Protective Devices 25811.6.2 Protecting Feeder Segments and Taps 25811.7 Coordination of Protective Devices 25811.7.1 General Coordination Rule 25911.7.2 Fuse-Fuse Coordination 25911.7.2.1 Model for Fuses 25911.7.2.2 Rule for Fuse-Fuse Coordination 26011.7.3 Recloser-Fuse Coordination 26211.7.4 Recloser-Sectionalizer Coordination 27011.7.4.1 Rule for Coordination 27011.7.5 Circuit Breaker-Recloser Coordination 27011.7.5.1 Models for Relay-controlled Circuit Breakers 27011.7.5.2 Rule for Coordination 27011.8 New Digital Sensing and Measuring Devices 27211.8.1 Phasor Measurement Units (PMUs) 27211.8.2 Microphasor Measurement Units 27211.8.3 Optical Line Current Sensors 27311.8.4 Optical Voltage Sensors 27411.8.5 Digital Pressure and Temperature Sensors 27411.8.6 Evolving Sensors 27411.9 Emerging Protection System Design and Coordination 274Problems 275References 27712 Power Quality for Distribution System 27912.1 Definition of Power Quality 27912.2 Impacts of Power Quality 28012.2.1 The Customer Side 28012.2.2 The Utility Side 28112.2.3 Importance of Power Quality 28112.2.4 Cost of Power Quality 28112.3 Harmonics and PQ Indices 28112.3.1 Total Harmonic Distortion (THD) 28112.3.1.1 Properties of THD 28212.3.2 Total Demand Distortion (TDD) 28312.3.3 Power Factor (PF) 28312.3.4 Standards for Harmonic Control 28412.4 Momentary Interruptions 28612.5 Voltage Sag and Swell 28612.5.1 Definition 28612.5.2 ITI (CBEMA) Curve 28712.6 Flicker 289Problems 290References 29013 Distributed Energy Resources and Microgrids 29313.1 Introduction 29313.2 DER Resources and Models 29313.2.1 Wind Generation 29313.2.2 Solar Generation 29513.2.3 Battery Energy Storage System (BESS) 29613.2.4 Microturbine 29813.2.5 Electric Vehicles 29813.3 Interconnection Issues 29913.4 Variable Solar Power 29913.5 Microgrids 30313.5.1 Microgrid Types by Supply and Structure 30313.5.1.1 ac Microgrids 30313.5.1.2 dc Microgrids 30413.5.1.3 Hybrid Microgrids 30513.5.1.4 Networked Microgrids 30513.5.2 Microgrid Modes of Operation 30513.5.2.1 Grid-Connected Mode 30513.5.2.2 Islanded Mode 30613.5.3 Grid-Following vs. Grid-Forming Inverters 30813.5.4 Microgrid Protection Challenges and Requirements 30913.5.5 Examples of Microgrid in Operation 31013.5.5.1 CERTS Microgrid 31013.5.5.2 IIT Microgrid 31113.5.5.3 Philadelphia Navy Yard Microgrid 31213.6 Off-Grid Electrification 31213.6.1 Designing Off-Grid Systems 31313.6.1.1 Load Estimation 31313.6.1.2 Resource Assessment 31313.6.1.3 Optimal System Design 31313.6.1.4 Other Factors 314References 314Appendix A Per-unit Representation 317A.1 Single-phase Systems 317A.2 Three-phase Systems 318A.2.1 Per-unit Values for Delta-Connected Systems 318A.2.2 Per-unit Values for Delta-Connected Systems 319A.3 Base Values for Transformers 319A.4 Change of Base 320A.5 Advantages of Per-unit Representation 320Appendix B Symmetrical Components 323Index 327
Subrahmanyam S. Venkata, PhD, is Affiliate Professor of Electrical and Computer Engineering at the University of Washington and President of Venkata Consulting Solutions, LLC, USA.Anil Pahwa, PhD, is University Distinguished Professor and Logan-Fetterhoof Electrical and Computer Engineering Faculty of Distinction Chair in Department of Electrical and Computer Engineering at Kansas State University, USA.
1997-2024 DolnySlask.com Agencja Internetowa