ISBN-13: 9783662068434 / Niemiecki / Miękka / 2013 / 379 str.
Die eindeutigen analytischen Funktionen konnen von verschiedenen Gesichtspunkten aus untersucht werden. Die in der vorliegenden Arbeit zur Darstellung gelangenden Fragen gruppieren sich um ein grosses Hauptproblem. Einige allgemeine Bemerkungen uber diese zentrale Fragestellung sollen hier vorausgeschickt werden. Wir denken uns ein gegebenes analytisches Funktionselement un beschrankt fortgesetzt. Angenommen, dass die so entstehende analytische Funktion w = w (z) eindeutig ist, existiert ein schlichtes Gebiet G mit z nachstehenden Eigenschaften. 1. Jedem inneren Punkt z von G entspricht ein und nur ein Element z von rationalem Charakter der Funktion w(z). 2. Jeder Randpunkt z* von G ist eine wesentliche Singularitat z von w(z). Falls G die ganze geschlossene Ebene umfasst (elliptischer Fall), z so ist w (z) eine rationale Funktion. Schliesst man diesen einfachsten Sonderfall aus, so hat man zwei Falle zu unterscheiden, je nachdem G z einfach oder mehrfach rusammenhangend ist. Wir beschranken uns auf den erstgenannten Fa} und haben dann weitere zwei Moglichkeiten zu berucksichtigen: die Berandung r von G ist entweder ein Punkt z z (parabolischer Fall) oder ein Kontinuum (hyperbolischer Fall). Das Gebiet G wird durch die Funktion w = w (z) auf eine uber der z w-Ebene ausgebreitete RIEMANNSche Flache G .konform abgebildet. to Die Umkehrfunktion z = z(w) von w(z) ist eine auf dieser Flache G to eindeutige und wegen der Eindeutigkeit von w (z) einwertige Funktion, d. h. den Mittelpunkten von zwei verschiedenen Elementen von z(w) sind stets zwei verschiedene Punkte z zugeordnet."