ISBN-13: 9781447173038 / Angielski / Twarda / 2016 / 190 str.
ISBN-13: 9781447173038 / Angielski / Twarda / 2016 / 190 str.
Reinforcement of materials by fibres with high tensile stiffness and strength allows the production of composite materials of high strength and toughness. Understanding the basic principles underlying this ability for reinforcement is critical to achieving desired properties in engineering fibre composite materials. In recent decades, technological advancements have enabled the structural properties of fibre composites to be investigated at different length scales, providing new insights. These investigations involved computer modelling using techniques such as finite element analysis and molecular mechanics, and relating micro and nanoscopic structures (derived from tools such as electron and atomic force microscopes) with mechanical properties derived from stress and strain measurements (using techniques such as Raman microscopy and x-rays from synchrotron sources). Nanotechnology has enabled the fabrication of nanometre fibres to yield greater composite strength and toughness. Fundamentals of Stress Transfer in Short-fibre Reinforcing Composites provides a survey of the concepts of fibre reinforced composites. These concepts are based on insights gained from current studies of short fibre reinforcement in composite materials. The concepts deal with the mechanisms of stress transfer and are explained as part of a general theory for understanding how fibres reinforce composites at different stages of the loading regime from initial loading up to composite rupture. In a fibrous composite the two components could fail at different strains when the load on the composite increases. The mechanisms of the transfer of stress between fibre and matrix are discussed by addressing the different loading regimes of the stress-strain curve from initial loading to rupture. Mechanisms of stress transfer are crucial for understanding: