Introduction.- Technology CSP+D- State of the Art.- Available technologies for seawater desalination at large scale.-Cogeneration of Electricity and Desalinated Water.- Concentrating Solar Power plants.- Combination of Concentrating Solar Power and Desalination Plants.- Cooling systems in Concentrating Solar Power Plants.- Steady-State Model of a Solar Multi-effect Distillation Plant.- Multi-effect Distillation Plants-State of the Art.- Description of the plant.- Design of the process.- Instrumentation.- Mathematical Modeling.- Parameterization.- Computational method.- Validation.- Simulations.- Steady-State Modeling of a Parabolic Trough Concentrating Solar Power Plant.- Modeling of a solar field composed of parabolic trough collectors.- Modeling of the power cycle.- Integration of a Desalination Plant into a Concentrating Solar Power Plant.- Description of the CSP+D systems.- Analysis of the integration of a Desalination Plant into a Concentrating Solar Power Plant.- Thermo-economic Analysis.- Sensitivity analysis.- Case Study with Thermodynamic analysis, Economic analysis, Results and Implications.
Dr. Patricia Palenzuela is currently a project researcher in
the Solar Desalination Unit at the Plataforma Solar de Almería-CIEMAT, the
largest concentrating solar technology research, development and test center in
Europe. She is a phD from the University of Almería, having developed all the
research activity of her thesis at the Plataforma Solar de Almería. She has
also conducted research at the Qatar Environmental and Energy Research
Institute and the Solar Energy Research Center-Chile (SERC-Chile) as a postdoctoral
fellow
Dr. Guillermo Zaragoza is currently senior researcher at the Solar Desalination Unit of CIEMAT-Plataforma Solar de Almería, and coordinator of the Action Group on “Renewable Energy Desalination” of the European Innovation Partnership on Water of the European Commission.
Dr. Diego-César Alarcón-Padilla is the current head of the Solar Desalination Unit at CIEMAT-Plataforma Solar de Almería. He also holds the position of Operating Agent of SolarPACES Task VI (Solar Energy and Water Processes and Applications) and the coordination of the Sub-Programme IV (Concentrated Solar Power and Desalination, CSP+D) within the framework of the EERA (European Energy Research Alliance) CSP Joint Programme.
· The first available thermo-economic analyses of Concentrating Solar Power and Desalination (CSP+D) Plants, using real figures from operating plants
· Includes all the equations used in the modeling of each component, creating an invaluable template for implementing similar models
· Demonstrates modeling and validation of a Multi-effect Distillation (MED) Plant with increased energy recovery and enhanced thermal efficiency
· Extended parametric analysis helps readers decide when integrating a Thermal Desalination Plant will yield better results than connecting a Reverse Osmosis Plant.
This ground-breaking book demonstrates how two key concerns in many communities across the globe- power and water- can be simultaneously addressed through the coupling of Concentrating Solar Power and Desalination (CSP+D) plants.
The book provides a detailed evaluation of the integration of Multi-effect Distillation Plants into CSP plants based on Parabolic Trough Solar Collectors (PT-CSP+MED), as compared to independent water and power production through Reverse Osmosis unit connection to a CSP plant (CSP+RO). Through this compare and contrast method of analysis, the author establish guidelines to assist in identifying cases wherein PT-CSP+MED systems provide superior economic and thermodynamic benefits.
The text describes the efficiencies and challenges of PT-CSP power generation in four different desalination plant scenarios, including detailed comparative thermodynamic efficiency analyses of several currently operating CSP+D systems. These findings are then placed in practical context through a complete thermo-economic analysis of two diverse potential sites, ascertaining the most viable CSP+D system in each region, as informed by actual operating conditions, meteorological data and real cost figures for each location.