ISBN-13: 9783540641186 / Niemiecki / Miękka / 1998 / 316 str.
47 n l1; Ilvll . Ilwll fUr alle v, wE lR sondere den Paragraphen 4 (ab Seite 34) inten siv studieren und sich stets den Fall n=3 ver Ziel 6 oder im Koordinatenschreibweise: 1 1 anschaulichen. Sie sollten wissen, was ein Nor Ziel 7 n n 2"2 n 2"2 (l: v.) ( w.) I r. v. w. I " malenvektor zu einer (Hyper-)Ebene ist (Defini i=1 1. 1. i=1 1. i=1 1. tion (16.27), Seite 35), wie alle Normalenvek toren "aussehen" (Satz (16.30), Seite 36), und Ziel 3 Die Ungleichung von Cauchy und Schwarz sollten wie man den Abstand d eines Punktes p von einer Sie eben so gut kennen wie die Dreiecksunglei (Hyper-)Ebene E berechnet ((16.35), Seite 37). chung (16.13), Seite 31: 1st E in Hessescher Normalform gegeben, also Ilu]vll; llull + Ilvll fUr alle u, v E lRn. n E={xElR I =c} mit II a II = 1, Als spezieller Winkel zwischen Vektoren ist der so gilt rechte Winkel ausfUhrlich untersucht worden d= Ic-1 . (ab Seite 32). Die Definition (16.15), Seite 32, Die auf den Seiten 38 bis 41 ausfUhrlich be Ziel 4 der OrthogonalitHt mUssen Sie kennen. schriebene Methode der kleinsten Quadrate wer Ziel 5 Sie sollten wissen, was man unter einer Ortho den Sie im Laufe Ihres Studiums sicher noch gonal- oder Orthonormalbasis eines Unterraumes hHufig auf konkrete MeBreihen anwenden mUssen."