ISBN-13: 9781461337058 / Angielski / Miękka / 2011 / 512 str.
ISBN-13: 9781461337058 / Angielski / Miękka / 2011 / 512 str.
In less than two decades the concept of supercon In every field of science there are one or two ductivity has been transformed from a laboratory individuals whose dedication, combined with an innate curiosity to usable large-scale applications. In the understanding, permits them to be able to grasp, late 1960's the concept of filamentary stabilization condense, and explain to the rest of us what that released the usefulness of zero resistance into the field is all about. For the field of titanium alloy marketplace, and the economic forces that drive tech superconductivity, such an individual is Ted Collings. nology soon focused on niobium-titanium alloys. They His background as a metallurgist has perhaps given him are ductile and thus fabricable into practical super a distinct advantage in understanding superconduc conducting wires that have the critical currents and tivity in titanium alloys because the optimization of fields necessary for large-scale devices. More than superconducting parameters in these alloys has been 90% of all present-day applications of superconductors almost exclusively metallurgical. Advantages in use titanium alloys. The drive to optimize these training and innate abilities notwithstanding, it is alloys resulted in a flood of research that has been the author's dedication that is the essential com collected, condensed, and analyzed in this volume."
1. Titanium Alloy Superconductors—A Tabulated Review.- TABLE 1-1 Unalloyed Titanium — Alpha-Phase (hep) Titanium.- TABLE 1-2 Unalloyed Titanium — Beta-Phase (bcc) Titanium.- TABLE 1-3 Unalloyed Titanium — Omega-Phase, Thin Films and Amorphous.- TABLE 1-4 Titanium-Vanadium Alloys — The Superconducting Transition.- TABLE 1-5 Titanium-Vanadium Alloys — The Mixed State.- TABLE 1-6 Titanium-Vanadium Alloys — Current Transport Effects.- TABLE 1-7 Titanium-Chromium Alloys — The Superconducting Transition.- TABLE 1-8 Titanium-Chromium Alloys — Current Transport and Magnetic Effects.- TABLE 1-9 Titanium-Manganese Alloys — The Superconducting Transition.- TABLE 1-10 Titanium-Manganese Alloys — Current Transport and Magnetic Effects.- TABLE 1-11 Titanium-Iron Alloys - The Superconducting Transition.- TABLE 1-12 Titanium-Iron Alloys - Current Transport and Magnetic Effects.- TABLE 1-13 Titanium-Cobalt Alloys.- TABLE 1-14 Titanium-Nickel Alloys.- TABLE 1-15 Titanium-Zirconium and Titanium-Hafnium Alloys.- TABLE 1-16 Titanium-Tantalum Alloys — The Superconducting Transition.- TABLE 1-17 Titanium-Tantalum Alloys — The Mixed State.- TABLE 1-18 Titanium-Tantalum Alloys — The Critical Current Density.- TABLE 1-19 Titanium-Molybdenum Alloys — The Superconducting Transition.- TABLE 1-20 Titanium-Molybdenum Alloys — The Mixed State.- TABLE 1-21 Titanium-Molybdenum Alloys — Current Transport Effects.- TABLE 1-22 Titanium-Tungsten Alloys.- TABLE 1-23 Titanium-Technetium and Titanium-Rhenium Alloys.- TABLE 1-24 Titanium-Ruthenium and Titanium-Osmium Alloys.- TABLE 1-25 Titanium-Rhodium, -Iridium, -Palladium and -Platinum Alloys.- TABLE 1-26 Titanium-Base Ternary Alloys (Excluding Alloys with Niobium).- TABLE 1-27 Titanium-Niobium Alloys — The Superconducting Transition.- TABLE 1-28 Titanium-Niobium Alloys — Critical Fields and the Mixed State.- TABLE 1-29 Titanium-Niobium Alloys - Critical Current Density, Flux Pinning.- TABLE 1-30 Titanium-Niobium-Boron, -Carbon, -Nitrogen, and -Oxygen Alloys.- TABLE 1-31 Titanium-Niobium-Simple-Metal Alloys.- TABLE 1-32 The Soviet Alloys.- TABLE 1-33 Titanium-Zirconium-Niobium Alloys — (a) Research Alloys.- — (b) A Commercial Wire Development Program.- — (c) Properties of Rolled Strip.- — (d) AC Effects in X-Type and Z-Type Alloys.- — (e) The Patent Literature.- TABLE 1-34 Titanium-Hafnium-Niobium Alloys.- TABLE 1-35 Titanium-Niobium-Vanadium Alloys.- TABLE 1-36 Titanium-Niobium-Tantalum Alloys.- TABLE 1-37 Titanium-Niobium-(Groups VI, VII, and VIII) Transition-Metal-Ternary Alloys.- TABLE 1-38 Titanium-Niobium-Base Quaternary Alloys.- TABLE 1-39 Amorphous Titanium Alloys.- 2. Unalloyed Titanium.- 2.1 Sample Purity and Measuring Technique.- 2.1.1 Influence of Trace Impurities.- 2.1.2 Refrigeration and Sample Temperature.- 2.1.3 Spurious Mechanical Effects.- 2.2 Transition Temperature — The Influences of Pressure and Allotropic Transformation.- 2.2.1 The Influence of Pressure.- 2.2.2 The Influence of Structure — Amorphous Titanium.- 2.2.3 The Influence of Structure — Omega-Phase.- 2.2.4 The Influence of Structure — The BCC-Phase.- 2.2.5 The Influence of Structure — Thin Films.- 2.3 The Isotope Effect.- 2.4 Superconducting Transition Temperature of Unalloyed T.- 2.5 Thermodynamic Critical Field of Unalloyed T.- 3. Titanium-Vanadium Binary Alloys.- 1: The Superconducting Transition In Titanium-Vanadium Alloys.- 3.1 Systematics of the Transition Temperature.- 3.2 Microscopic Mechanisms of Superconductivity.- 3.2.1 The Electron-Phonon Interaction.- 3.2.2 The Magnetic Interaction.- 3.3 Transition Temperature and Microstructure.- 3.3.1 Properties of Annealed and Quenched Microstructures.- 3.3.2 Influences of Aging and Other Heat Treatments.- 3.4 Sputtered Films.- 2: THE MIXED STATE IN TITANIUM-VANADIUM ALLOYS.- 3.5 The Lower Critical Field, Hc1.- 3.6 The Upper Critical Field, Hc2.- 3.6.1 Temperature Dependences — Early Studies.- 3.6.2 Composition Dependences — Early Studies.- 3.6.3 Temperature Dependences — Paramagnetic Limitation.- 3.6.4 Experimental Evaluation of the MAKI-WHH Theory.- 3.6.5 Properties of the Paramagnetic Mixed State.- 3.7 The Surface Sheath Critical Field, Hc3.- 3.8 Flux-Flow Resistivity.- 3.9 Magnetization Measurement as a Metallurgical Diagnostic Technique.- 3: Current Transport Effects In Titanium-Vanadium Alloys.- 3.10 Fluctuation Superconductivity.- 3.11 Critical Current Density.- 3.11.1 Bulk Alloys.- 3.11.2 Sputtered Films.- 3.12 Normal-State Transport Properties Related to Superconductivity.- 4: Tabulated Data.- 4. Binary Alloys Of Titanium with Chromium, Manganese, Iron, Cobalt, or Nickel.- Alloy Group 1: Titanium-Chromium Binary Alloys.- 4.1 Transition Temperature as a Function of Composition in Dilute Ti-Cr Alloys.- 4.2 Transition Temperature and Microstructure in Quenched and Heat-Treated Ti-Cr Alloys.- 4.2.1 Transition Temperatures of Quenched Alloys.- 4.2.2 Influence of Aging and Other Heat Treatments on the Transition Temperature.- 4.3 Superconductivity in Ti-Cr Alloys — Tabulated Data.- Alloy Group 2: Titanium-Manganese Binary Alloys.- 4.4 Transition Temperature as a Function of Composition in Ti-Mn Alloys.- 4.5 Calorimetrie Studies of Superconductivity in Ti-Mn Alloys.- 4.6 Transport Property and Magnetic Studies of Ti-Mn Alloys.- 4.7 Superconductivity and Microstructure in Ti-Mn Alloys.- 4.8 Superconductivity in Ti-Mn Alloys — Tabulated Data.- Alloy Group 3: Titanium-Iron Binary Alloys.- 4.9 Transition Temperature as a Function of Composition in Ti-Fe Alloys — Alternative Models for Superconductivity.- 4.9.1 The Magnetic Interaction Model.- 4.9.1 Other Localized-State Interactions.- 4.10 Transition Temperature and Microstructure in Quenched and Heat-Treated Ti-Fe Alloys.- 4.10.1 Transition Temperatures of Quenched and Equilibrated Alloys.- 4.10.2 Influence of Aging on the Transition Temperature.- 4.11 Calorimetrie Studies of Superconductivity in Ti-Fe Alloys.- 4.12 Transport Property and Magnetic Studies of Ti-Fe Alloys.- 4.13 Superconductivity in Ti-Fe Alloys — Tabulated Data.- Alloy Group 4: Titanium-Cobalt And Titanium-Nickel Binary Alloys.- 4.14 Magnetic and Calorimetrie Studies of the Superconducting Transition in Ti-Co Alloys.- 4.15 Superconductivity in Ti-Co Alloys — Tabulated Data.- 4.16 Transport Property and Calorimetric Studies of Ti-Ni Alloys.- 5. Binary Alloys Of Titanium With The Second-Long Period (4d) And Third-Long Period (5d) Transition Elements.- Alloy Group 1: Titanium-Zirconium and Titanium-Hafnium Binary Alloys.- 5.1 Superconductivity in Ti-Zr Alloys.- 5.1.1 Composition Dependence of the Transition Temperature.- 5.1.2 Calorimetrie Studies of Superconductivity.- 5.1.3 Concluding Discussion.- 5.2 Superconductivity in Ti-Hf Alloys.- 5.3 Superconductivity in Ti-Zr and Ti-Hf Alloys — Tabulated Data.- Alloy Group 2: Titanium-Tantalum Binary Alloys.- 5.4 Superconductivity in Ti-Ta Alloys.- 5.5 Transition Temperatures of Ti-Ta Alloys.- 5.5.1 Composition Dependence of the Transition Temperature.- 5.5.2 Influence of Aging on the Transition Temperature.- 5.6 Upper Critical Fields of Ti-Ta Alloys 173.- 5.6.1 Experimental Studies of the Resistive Upper Critical Field.- 5.6.2 Influence of Spin-Orbit-Scattering Effects on the Paramagnetically Limited Upper Critical Fields of Ti-Ta Alloys.- 5.7 Critical Current Densities of Ti-Ta Alloys.- 5.7.1 Factors Which Influence Flux Pinning.- 5.7.2 Influence of Cold Work on the Critical Current Density.- 5.7.3 Influence of Heat Treatment on the Critical Current Density.- 5.8 Sputtered Ti-Ta Alloy Films.- 5.9 Superconductivity in Ti-Ta Alloys — Tabulated Data.- Alloy Group 3: Titanium-Molybdenum Binary Alloys.- 5.10 Superconductivity in Ti-Mo Alloys.- 5.11 Transition Temperatures of Ti-Mo Alloys.- 5.11.1 The Superconducting Transition Temperatures of bcc Ti-Mo Alloys.- 5.11.2 The Transition Temperatures of the Quenched Martensitic Alloys.- 5.11.3 Influence of Deformation on the Superconducting Transition.- 5.11.4 The Structures of Quenched and Deformed Ti-Mo Alloys.- 5.11.5 Influence of Aging on the Superconducting Transition.- 5.12 The Mixed State of Ti-Mo Alloys.- 5.12.1 The Development of Mixed State Theories.- 5.12.2 Early Studies of the Upper Critical Field.- 5.12.3 Pauli Paramagnetic Limitation and the Order of the Transition at Hc2.- 5.12.4 Experimental Testing of the MAKI and WHH Theories of the Paramagnetic Mixed State.- 5.12.5 The Mixed-State Hall Effect in Ti-Mo Alloys.- 5.13 Critical Current Densities of Ti-Mo Alloys.- 5.14 Anomalous Transport Properties of Ti-Mo Alloys.- 5.14.1 Fluctuation Superconductivity.- 5.14.2 Negative Normal-State Resistivity Temperature Dependence and Magnetoresistance.- 5.15 Superconductivity in Ti-Mo Alloys — Tabulated Data.- Alloy Group 4: Titanium-Technetium And Titanium-Rhenium Binary Alloys.- 5.16 Superconductivity in Ti-Tc Alloys.- 5.17 Superconductivity in Ti-Re Alloys.- 5.18 Superconductivity in Ti-Tc and Ti-Re Alloys — Tabulated Data.- Alloy Group 5: Titanium-Ruthenium, -Osmium, -Rhodium, -Iridium, -Palladium, And -Platinum Binary Alloys.- 5.19 Superconductivity in Ti-Ru Alloys.- 5.19.1 Composition Dependence of the Transition Temperature.- 5.19.2 Fluctuation Superconductivity in Ti-Ru Alloys.- 5.20 Superconductivity in Ti-Os Alloys.- 5.21 Superconductivity in Ti-Rh Alloys.- 5.21.1 Composition Dependence of the Transition Temperature.- 5.21.2 Calorimetric Studies of Superconductivity in Ti-Rh Alloys.- 5.22 Superconductivity in Ti-Ir Alloys.- 5.22.1 Magnetic Measurements.- 5.22.2 Calorimetric Measurements.- 5.23 Superconductivity in Ti-Pt Alloys.- 5.24 Superconductivity in Binary Alloys of Ti with the 4d- and 5d-Group-VIII Transition Elements Ru, Rh, Ir, and Pt — Tabulated Data.- 6. Ternary Alloys Of Titanium with Simple Metals and Transition Metals (Except Niobium).- 6.1 Superconductivity in Ti-TM-SM Ternary Alloys.- 6.2 Superconductivity in Ti-Zr-TM Ternary Alloys.- 6.3 Superconductivity in Ti-V-TM Ternary Alloys.- 6.3.1 General Discussion.- 6.3.2 Superconductivity in Ti-V-Cr Alloys.- 6.4 Ti-Rh-TM (Including Noble-Metal) Ternary Alloys.- 6.5 Ternary Ti-V-Base and Ti-Ta-Base Alloys with C, N, or 0.- 6.6 Superconductivity in Ternary Alloys of Ti with Simple Metals and Transition Metals (Except Nb) — Tabulated Data.- 7. Titanium-Niobium Binary Alloys.- Usages and Conversions.- Alloy Compositions.- Magnetic Fields.- 1: The Superconducting Transition In Titanium-Niobium Alloys.- 7.1 The Superconducting Transition Temperature.- 7.2 Systematics of the Transition Temperature.- 7.3 Transition Temperatures of Low-Concentration Ti-Nb Alloys.- 7.4 Calorimetric Measurements of the Transition Temperature.- 7.5 Fluctuation Effects — Transport Properties.- 7.5.1 Electrical Resistivity.- 7.5.2 Thermal Conductivity.- 7.6 Influence of Aging on the Transition Temperature.- 7.7 Commercial Alloys.- 2: The Mixed State In Titanium-Niobium Alloys.- 7.8 The Magnetic Properties of Type-II Superconductors.- 7.9 The Upper Critical Field, Hc2, as a Function of Metallurgical Variables.- 7.9.1 Alloying.- 7.9.2 Deformation and Heat Treatment.- 7.10 The Upper Critical Field, Hc2, as a Function of Temperature.- 7.10.1 Early Studies.- 7.10.2 Paramagnetic Theories of Mixed-State Temperature Dependence.- 7.11 Conclusions from MAKI-WHH Theory.- 7.12 The Lower Critical Field, Hc1.- 7.13 The Role of Ti-Nb Alloys in the Formulation of Macroscopic Models of the Mixed State.- 7.14 Static Magnetization and the Critical State.- 7.14.1 Magnetization in the Mixed State.- 7.14.2 Magnetization and Critical Current.- 7.15 Flux Creep.- 7.16 Flux Flow and Flux Jumping.- 7.16.1 Magnetic Studies of Flux Flow.- 7.16.2 Transport Studies of Flux Flow.- 7.16.3 Flux Jumping.- 7.17 Phenomenological Studies of the Upper Critical Field.- 7.17.1 The Significance of Hc2 in Technical Superconductivity.- 7.17.2 Composition Dependence of Hc2.- 7.17.3 Temperature Dependence of Hc2.- 7.17.4 The Status of Resistive Upper Critical Field Determination — Experimental Artifacts.- 3: Critical Current Density In Titanium-Niobium Alloys.- 7.18 Introduction.- 7.18.1 Early Literature and Patents (pre-1966) Relating to Technical Ti-Nb Superconductors.- 7.18.2 Early Studies of Pulse and AC Effects and Long-Sample (Coil) J -Measurements in Ti-Nb Superconductors.- 7.18.3 Scope of the Discussion of Critical Current Density.- 7.19 Metallurgical Introduction.- 7.19.1 Microstructure and Macrostructure in Ti-Nb Alloys.- 7.19.2 Equilibrium and Nonequi1ibrium Phases and the Effects of Deformation and Aging.- 7.20 Quenched-and-Aged Microstructures of Ti-Nb Alloys.- 7.20.1 The Occurrence of the Martensitic and Omega-Phases in Quenched Ti-Nb Alloys.- 7.20.2 The Occurrence of the Isothermal-?, Separated-ß, and Equilibrium-? Phases in Aged Ti-Nb.- 7.21 Metallography of Deformed-and-Aged Ti-Nb Alloys.- 7.22 Influence of Metallurgical Variables on the Critical Current Density.- 7.23 R,Q — Recrystallized or ß-Quenched Ti-Nb Alloys.- 7.24 C,Q,CD — Cast, ß-Quenched or ß-Cooled and Cold-Deformed Ti-Nb Alloys.- 7.25 R,Q,C//A — Recrystallized, ß-Quenched or ß-Cooled and Aged Ti-Nb Alloys.- 7.26 D//A — Cold-Deformed-and-Aged Ti-Nb Alloys.- 7.26.1 Low-Concentration (40 at.% Nb) Ti-Nb Alloys.- 7.26.4 Flux-Pinning Microstructures of Cold-Worked-and-Aged Ti-Nb Alloys.- 7.26.5 Section Summary — Characteristics of Deformed-and-Aged (D//A) Ti-Nb Alloys.- 7.27 D//A//D — Cold Deformed, Aged and Final Deformed Ti-Nb Conductors — An Introduction to Technical Process Development.- 7.28 D//A-D-A//D — Cold Deformed, Multiple-Intermediate-Aged and Final Deformed Ti-Nb Conductors — A Further Introduction to Technical Process Development.- 7.28.1 Fundamental Contributions by WILLBRAND, ARNDT et al, Krupp Forschungsinstitut, Essen, BRD.- 7.28.2 Fundamental Contributions by HILLMANN et al, Entwicklungsabteilung, Vacuumschmelze GmbH, Hanau, BRD.- 7.29 Sputtered Ti-Nb Alloy Films.- 4: Recent Advanced In Titanium-Niobium Superconductors.- 7.30 Flux-Pinning Microstructures in Ti-Nb Alloys.- 7.30.1 Precipitate-Free Subbands.- 7.30.2 Subbands and Precipitates.- 7.31 Process Optimization of Ti-Nb Superconductors.- 7.31.1 Intermediate Heat Treatment.- 7.31.2 Final Cold Deformation.- 7.32 Recent Advances in Process Optimization.- 7.32.1 Total Area Reduction and Final Cold Deformation.- 7.32.2 Thermomechanical Process Optimization.- 7.32.3 Critical Field Limitation.- 5: Critical Current Data — Some Graphical Representations.- 7.33 Comparative Survey of Some Contemporary High-Field Cu-Stabilized Ti-Nb Monolithic Composite Conductors.- 8. Titanium-Niobium and Titanium-Niobium-Base Alloys Containing Small Additions of Boron, Carbon, Nitrogen, or Oxygen.- Alloy Group 1: Boron And Carbon Additions To Titanium-Niobium.- 8.1 Boron Additions to Ti-Nb.- 8.2 Carbon Additions to Ti-Nb.- Alloy group 2: Nitrogen Additions to Titanium-Niobium, Titanium-Hafnium-Niobium and Titanium-Niobium-Tantalum.- 8.3 Nitrogen Additions to Ti-Nb.- 8.3.1 Nitrogen Additions to Ti-33Nb (20 at.% Nb).- 8.3.2 Nitrogen (and Occasionally Nitrogen Plus Oxygen) Additions to Ti-40Nb (25.5 at.% Nb).- 8.3.3 Nitrogen (and Occasionally Nitrogen Plus Oxygen) Additions to Ti-56Nb (39.5 at.% Nb).- 8.3.4 Nitrogen Additions to Ti-66Nb (50 at.% Nb).- 8.4 Nitrogen Additions to Ti-Hf-Nb and Ti-Nb-Ta Alloys.- Alloy group 3: Oxygen Additions to Titanium-Niobium and some Titanium-Niobium-Base Ternary and Quaternary Alloys.- 8.5 Transition Temperatures of Ti-Nb-O Alloys.- 8.6 Critical Current Densities of Ti-Nb-O Alloys.- 8.6.1 Oxygen Additions to Ti-40Nb (25.5 àt.% Nb).- 8.6.2 Oxygen Additions to Ti-50Nb (34 at.% Nb).- 8.6.3 Oxygen Additions to Ti-56Nb (39.5 at.% Nb).- 8.6.4 Identification of the Active Impurities in Kroll-Process Ti.- 8.6.5 Oxygen Additions to Ti-60Nb (43.5 àt.% Nb).- 8.7 Critical Current Densities of Quaternary Alloys Containing Oxygen.- 8.7.1 Oxygen Additions to Ti-Nb-TM Alloys.- 8.7.2 Oxygen Additions to Ti-Nb-Rare-Earth Alloys.- Tabulated Data — Influences of C, N, and O on the Tc of Ti-Nb.- Typical Interstitial-Element Levels in Ti-50Nb and its Constituents.- 9. Ternary Alloys of Titanium-Niobium with Simple Metals.- 9.1 Metallurgical Considerations.- 9.2 Superconductivity in Ti-Nb-SM Alloys — A Comparative Survey.- 9.2.1 The Superconducting Transition Temperature.- 9.2.2 The Upper Critical Field.- Alloy Group 1: Titanium-Niobium-Simple-Metal Ternary Alloys.- 9.3 A1 Additions to Ti-Nb.- 9.3.1 The Transition Temperature.- 9.3.2 The Critical Field.- 9.3.3 Critical Current Density.- 9.4 Si Additions to Ti-Nb.- 9.5 Ga Additions to Ti-Nb.- 9.6 Y Additions to Ti-Nb.- 9.6.1 Y Additions to Ti-39Nb.- 9.6.2 Y Additions to Ti-55Nb.- 9.7 Ag Additions to Ti-Nb.- 9.8 In Additions to Ti-Nb.- 9.9 Sn Additions to Ti-Nb.- 9.10 Additions of Sb, Au, Pb, U, and Pairs of Simple Metals to Ti-Nb.- Alloy Group 2: Titanium-Niobium-Copper Ternary Alloys.- 9.11 Superconductivity in Ti-Nb-Cu Alloys.- 9.12 Transition Temperatures of Ti-Nb-Cu Alloys.- 9.12.1 Low-Concentration Ti-Nb-Cu Alloys.- 9.12.2 Intermediate-Concentration Ti-Nb-Cu Alloys.- 9.13 Upper Critical Fields of Ti-Nb-Cu Alloys.- 9.14 Critical Current Densities of Ti-Nb-Cu Alloys.- 9.14.1 Critical Current Densities of Research Alloys.- 9.14.2 Critical Current Densities of Technical Alloys.- Alloy Group 3: Titanium-Niobium-Germanium Ternary Alloys.- 9.15 Transition Temperatures of Ti-Nb-Ge Alloys.- 9.16 Upper Critical Fields of Ti-Nb-Ge Alloys.- 9.17 Critical Current Densities of Ti-Nb-Ge Alloys.- 9.17.1 Critical Current Densities of Research Alloys.- 9.17.2 Critical Current Densities of Technical Alloys.- Concluding Discussion.- 9.18 Flux Pinning in Ti-Nb-Cu and Ti-Nb-Ge Alloys.- 10. Soviet Technical Alloys.- 10.1 Processing of Soviet Alloys — Homogeneity of the Starting Billet.- 10.2 Processing and Structures of 35 BT.- 10.3 Processing and Structures of 50 BT.- 10.3.1 Quenched-Plus-Aged 50 BT-Type Alloys.- 10.3.2 Deformed-Plus-Aged 50 BT-Type Alloys.- 10.4 Processing and Structures of 65 BT.- 10.4.1 Quenched-Plus-Aged 65 BT.- 10.4.2 Deformed-Plus-Aged 65 BT.- 10.5 Critical Current Densities of the Soviet Alloys.- 10.5.1 The Critical Current Density of 65 BT.- 10.5.2 Critical Current Densities of Other Alloys.- 10.6 Applications of Soviet Technical Alloys.- 10.6.1 Coil Tests of T 60 and SS 2.- 10.6.2 Welded Joints.- 10.6.3 Small Coil Properties of 65 BT.- 11. Titanium-Zirconium-Niobium Ternary Alloys.- 11.1 Superconductivity and Metallurgy in Ti-Zr-Nb Alloys.- 1: Research and Development of Titanium-Zirconium-Niobium Alloy Superconductors.- 11.2 Transition Temperatures of Ti-Zr-Nb Research Alloys.- 11.3 Critical Fields of Ti-Zr-Nb Research Alloys.- 11.3.1 The Lower Critical Field, Hc1.- 11.3.2 The Upper Critical Field, Hc2.- 11.4 Critical Current Densities of Ti-Zr-Nb Research Alloys.- 11.5 Introduction to the Patent Literature of Ti-Zr-Nb Alloy Superconductors.- 2: Titanium-Zirconium-Niobium Technical Alloy Development in Japan.- 11.6 Metallurgy of the Technical Superconducting Ti-Zr-Nb Alloys.- 11.6.1 Precipitation from the Zr-Nb-Base (X-Type) Alloy, Ti10-Zr40-Nb50.- 11.6.2 Precipitation from the Ti-Nb-Base (Z-Type) Alloy, Ti60-Zr5-Nb35.- 11.7 Alloy and Process Development for Ti-Zr-Nb.- 11.7.1 Screening Studies.- 11.7.2 Properties of the X-Type Alloy, Ti10-Zr40-Nb50.- 11.7.3 Properties of the Z-Type Alloys, Ti60-Zr5-Nb35 and Ti45-Zr15-Nb40.- 11.7.4 An Intercomparison of the Properties of X-Type Ti10-Zr40-Nb50 and Z-Type Ti60-Zr5-Nb35.- 11.8 Comparative Studies of X-Type and Z-Type Alloy Wires.- 11.8.1 The Ternary Critical-Current-Density Triangle.- 11.8.2 The Zr-Nb-Rich (X-Type Superconductor) Zone.- 11.8.3 The Ti-Nb-Rich (Z-Type Superconductor) Zone.- 11.8.4 Final Commentary.- 11.9 Properties of Contemporary Commercial Ti-Zr-Nb Conductors.- 11.10 Alloy and Process Development for Ti-Zr-Nb Rolled-Ribbon (Strip) Conductor.- 11.10.1 Superconductivity in Ti-Zr-Nb Rolled Strip.- 11.10.2 Properties of X-Type Ti10-Zr40-Nb50 Rolled Strip.- 11.10.3 Properties of Z-Type Ti55-75-Zr5-Nb Rolled Strip.- 11.11 Intercomparison of the Properties of Ti-Zr-Nb Wire and Rolled Strip.- 3: Alternating-Current-And-Field Effects In Titanium-Zirconium-Niobium Alloy Superconductors.- 11.12 AC Loss Studies of Technical Ti-Zr-Nb Superconductors.- 11.13 Critical Alternating Current in Zero Applied Magnetic Field.- 11.14 Critical Direct Current in a Longitudinal Alternating Magnetic Field.- 11.15 Alternating Current Loss in Zero Applied Magnetic Field.- 11.16 Magnetic Hysteresis Loss in Bare and Stabilized Ti-Zr-Nb Superconductors.- 11.17 Magnetic Hysteresis Loss in Bare Ti-Zr-Nb Alloy Wire.- 11.17.1 Influence of Composition.- 11.17.2 Influence of Wire Diameter.- 11.17.3 Hysteresis and Flux-Jump Anisotropies.- 11.18 AC Losses in Open-Circuited (i.e. Non-Inductively Wound) Composite Superconductors in Transverse Magnetic Fields.- 11.19 AC Loss in Ti-Zr-Nb-Base Composite Conductors — Cu Matrix.- 11.19.1 Applied Field Amplitude.- 11.19.2 Twist Pitch.- 11.20 AC Loss in Ti-Zr-Nb-Base Composite Conductors — Resistive (Mixed) Matrix.- 12. Titanium-Niobium-Base Ternary Transition Metal Alloys (Except Titanium-Zirconium-Niobium).- Alloy Group 1: Titanium-Hafnium-Niobium And Titanium-Niobium-Vanadium Alloys.- 12.1 Superconductivity in Ti-Hf-Nb Alloys.- 12.1.1 Introduction.- 12.1.2 Transition Temperatures of Ti-Hf-Nb Alloys.- 12.1.3 Critical Fields of Ti-Hf-Nb Alloys.- 12.1.4 Critical Current Densities of Ti-Hf-Nb Alloys.- 12.2 Superconductivity in Ti-Nb-V Alloys.- 12.2.1 Transition Temperatures of Ti-Nb-V Alloys.- 12.2.2 Critical Fields of Ti-Nb-V Alloys.- 12.2.3 Critical Current Densities of Ti-Nb-V Alloys.- Alloy Group 2: Titanium-Niobium-Tantalum Alloys.- 12.3 Superconductivity in Ti-Nb-Ta Alloys.- 12.4 Transition Temperatures of Ti-Nb-Ta Alloys.- 12.5 Upper Critical Fields of Ti-Nb-Ta Alloys.- 12.6 Critical Current Densities of Ti-Nb-Ta Alloys.- 12.7 Intercomparison of the Critical Current Densities of Ti-Nb and Ti-Nb-Ta Alloys.- 12.7.1 Comparative Data.- 12.7.2 Concluding Summary.- Alloy Group 3: Alloys of Titanium-Niobium with Groups VI through VIII Transition Elements.- 12.8 Alloys of Ti-Nb with the Group-VI Elements Cr, Mo, and W.- 12.8.1 Transition Temperatures of Ti-Nb-(Cr,Mo,W) Alloys.- 12.8.2 Critical Fields of Ti-Nb-(Cr,Mo,W) Alloys.- 12.8.3 Critical Current Densities of Ti-Nb-(Cr,Mo) Alloys.- 12.9 Alloys of Ti-Nb with the Group-VII Elements Mn and Re.- 12.10 Alloys of Ti-Nb with the Group-VIII Elements (Fe through Pt).- 12.10.1 Transition Temperatures of Ti-Nb-(Group-VI11)TM Alloys.- 12.10.2 Critical Fields of Ti-Nb-(Group-VIII)TM Alloys.- 12.10.3 Critical Current Density of Ti-Nb-Fe.- Tabulated Data — Superconductivity In Titanium-Niobium-Transition-Metal Alloys.- 13. Titanium-Niobium-Base Quaternary Alloys.- 13.1 The Patent Literature.- 1: The Superconducting Transition In Titanium-Niobium-Base Quaternary Alloys.- 13.2 Influence of Simple-Metal Additions on the Transition Temperature.- 13.3 Transition Temperatures of Quaternary Alloys Selected from the Scheme: [Group IV (Ti-(Zr-Hf))]-[Group V ((V-Ta)-Nb)].- 13.4 Transition Temperatures of Ti-Nb-TM1-TM2 Alloys — Conclusion.- 2: Critical Fields Of Titanium-Niobium-Base Quaternary Alloys.- 13.5 Quaternary-Alloy Critical Fields — An Overview.- 13.6 The Influence of Hf on the Hc2 of Ti-Zr-Nb and Ti-Nb-Ta.- 13.7 The Influence of Ta on the Hc2 of Ti-Zr-Nb.- 3: Critical Current Density in Titanium-Niobium-Base Quaternary Alloys.- 13.8 Quaternary Alloy Critical Current Densities — An Overview.- 13.9 The Influence of Hf on the Critical Current Density of Ti-Zr-Nb.- 13.10 The Influence of Ta on the Critical Current Density of Ti-Zr-Nb.- 13.10.1 Ta and Other Additions to Zr-Nb-Rich Ti-Zr-Nb.- 13.10.2 Ta Additions to Equiatomic Ti-Zr-Nb.- 13.10.3 Ta Additions to Ti-Nb-Rich Ti-Zr-Nb.- 13.11 Properties of the Technical Quaternary Alloy Ti61-Zr6-Nb27-Ta6.- 13.11.1 Stress Effects.- 13.11.2 Optimization Studies.- 13.11.3 Flux Pinning and the Scaling Laws.- 14. Amorphous Titanium Alloy Superconductors.- Alloy Group 1: Amorphous and Glassy Metals.- 14.1 Stability and Properties of Amorphous Alloys.- 14.2 Amorphous and Glassy Alloy Superconductors.- 14.3 Transition Temperatures of Amorphous Superconductors.- Alloy Group 2: Glassy Titanium Alloys.- 14.4 Phase Stability and Mechanical Properties of Glassy Ti-Nb-Si Alloys.- 14.5 Aging and Crystallization of Glassy Ti-Nb-Si Alloys.- 14.5.1 Aging.- 14.5.2 Crystallization.- 14.6 Transition Temperatures of Amorphous Ti Alloys.- 14.6.1 Composition Dependence in the Ternary Alloys.- 14.6.2 Composition Dependence in the Quaternary Alloys.- 14.6.3 Influence of Cold Deformation.- 14.6.4 Influence of One-Hour Heat Treatment.- 14.7 Critical Fields of Amorphous Ti Alloys.- 14.8 Critical Current Densities of Amorphous Ti Alloys.- 14.8.1 As-Quenched Metallic-Glass Ribbon.- 14.8.2 Alloy Ribbons Crystallized from the Amorphous Phase.- References.- Author Index.
1997-2024 DolnySlask.com Agencja Internetowa