ISBN-13: 9783642836138 / Angielski / Miękka / 2011 / 283 str.
ISBN-13: 9783642836138 / Angielski / Miękka / 2011 / 283 str.
Latest techniques for the analysis of plant cell or tissue structure and the registration of physiological pathways are topics of this volume. The subjects include: - Laser Doppler Vibrometer Measurements of Leaves; - Laster Physical Methods. Laser Microprobe Mass Spectrometry; - Triplet States in Photosynthesis: Linear Dichroic Optical Difference Spectra via Magnetic Resonance; - Fast Atom Bombardment Mass Spectrometry; -Microdissection and Biochemical Analysis of Plant Tissues; - Photoacoustic Spectroscopy - Photoacoustic and Photothermal Effects; - Membrane Operational Impedance of Spectra of Plant Cell.
Laser—Doppler Vibrometer Measurements of Leaves.- 1 Introduction.- 2 Materials and Methods.- 2.1 Laser-Doppler-Vibrometer Scanning System.- 2.2 Specific Materials.- 3 Two Simple Models for Vibrating Leaf Tissue.- 3.1 Clamped, Isotropic Membranes.- 3.2 Clamped, Isotropic Plates.- 4 Experiments and Results with Clamped Leaves.- 4.1 Point Measurements of the Vibration Velocity with LDV.- 4.2 Optical Scanning over the Surface with LDV-Scanning.- 5 Experiments and Results with Free Hanging Leaves.- 5.1 Point Measurements of the Vibration Velocity with LDV.- 5.2 Optical Scanning over the Surface with LD-Interferometry and LDV-Scanning.- 6 Discussion.- 6.1 Sound-Induced Vibrations of Leaves.- 6.2 The Usefulness of LDV and LDV-Scanning.- References.- Triplet States in Photosynthesis: Linear Dichroic Optical Difference Spectra via Magnetic Resonance.- 1 Why Triplet States Are of Interest.- 1.1 Some Physics.- 1.2 Magnetic Resonance.- 1.3 Optical Detection of Magnetic Resonance, ODMR.- 1.4 Instrumentation.- 2 Information Obtainable from ODMR Spectroscopy.- 2.1 Determination of Zero Field Splitting Parameters, Sublevel Population Probabilities and Decay Rates.- 2.2 Spectral Information: Microwave-Induced Phosphorescence, Fluorescence and Absorbance Spectra.- 2.3 Triplet-Minus-Singlet (T-S) Absorbance Difference Spectra.- 2.4 Linear Dichroic T-S Spectroscopy.- 2.5 Instrumentation for LD-(T-S) Spectroscopy.- 3 Applications of ODMR in Photosynthesis.- 3.1 FDMR Spectroscopy.- 3.2 ADMR Spectroscopy of Reaction Centers.- 3.2.1 T-S Spectra of Bacterial Reaction Centers.- 3.2.2 T-S Spectra of Plant Reaction Centers.- 3.2.3 Linear Dichroic T-S Spectroscopy.- 3.3 Spectral Simulations with Exciton Theory.- 4 Conclusions and Prospects.- References.- Laser Physical Methods: Laser Microprobe Mass Spectrometry.- 1 Introduction.- 2 Historical Survey.- 3 Instrumentation.- 3.1 LAMMA 500.- 3.2 LAMMA 1000.- 3.3 LIMA and LIMA-SIMS.- 4 Specimen Preparation.- 5 Features of the Instrument.- 5.1 Advantages.- 5.2 Disadvantages.- 5.3 Detection Limits and Sensitivity.- 5.4 Quantification.- 6 Experimental Parameters of Different Groups.- 7 Ion Formation Mechanisms and Characteristics of Spectra.- 8 Efficiency of Different Microprobe Methods.- 9 LAMMA Applications, Inorganic Ions.- 9.1 Inorganic Salts.- 9.2 Aerosol Research.- 9.3 Fingerprint Analysis of Single Cells.- 9.4 Analysis of Plant Exudates.- 9.5 Localization of Inorganic Ions and of Toxic Metals in Tissues.- 10 LAMMA Applications Organic Compound Analysis.- 10.1 Saccharides.- 10.2 Amino Acids, Oligopeptides and Alkaloids.- 10.3 Tracing of Organic Molecules in Plant Tissue.- 11 Stable Isotopes as Markers.- References.- Fast Atom Bombardment Mass Spectrometry.- 1 Introduction to Fast Atom Bombardment Mass Spectrometry.- 2 Quantification and Stable Isotope Analysis of Quaternary Ammonium Compounds.- 2.1 Betaines.- 2.2 Betaine Aldehyde.- 2.3 Choline.- 3 Quantification and Stable Isotope Analysis of Amino Acids.- 4 Analysis of Oligosaccharides.- 5 Analysis of Polypeptides.- 6 Analysis of Glycoproteins.- 7 Nucleotide Analysis.- 8 Structural Characterization of Miscellaneous Secondary Plant Products.- 9 Concluding Remarks.- 10 References.- Microdissection and Biochemical Analysis of Plant Tissues.- 1 Introduction.- 2 Freeze Stop.- 3 Storage of Frozen Tissues.- 4 Freeze-Drying.- 5 Sample Containers.- 6 Storage of Freeze-Dried Material.- 7 Dissection of Tissue.- 7.1 Environmental Requirements.- 7.2 Dissection Procedure.- 7.3 Collection and Transfer of Dissected Samples.- 8 Determination of Sample Mass.- 8.1 Microbalance.- 8.2 Mounting the Balance.- 8.3 Illumination and Viewing.- 8.4 Handling.- 8.5 Calibration.- 8.6 Maintenance.- 9 Biochemical Analysis of Samples.- 9.1 Working with Small Assay Volumes.- 9.1.1 Assay Racks.- 9.1.2 Pipetting.- 9.1.3 Use of Oil Wells.- 9.2 Enzymatic Cycling.- 9.3 Indicator Reaction.- 10 Example for the Complete Procedure: Determination of Fumarase Activity.- 11 Examples for Application: Intercellular Compartmentation of Physiological and Biochemical Properties in Plant Tissues.- 11.1 Appearance of Enzymes of Major Pathways in Distinct Leaf Cells.- 11.2 Leaf Development: Quantitative Histochemical Analysis Along an Elongating Primary Leaf of Hordeum vulgare.- 11.3 Leaf Movement: Examples for Biochemical Properties of Cells Along a Cross Section Through a Phaseolus coccineus Pulvinus.- 12 Final Remarks.- References.- Photoacoustic Spectroscopy — Photoacoustic and Photothermal Effects.- 1 Introduction.- 2 Physics of the Photoacoustic Effect.- 2.1 Excitation.- 2.2 Generation and Propagation of the Photoacoustic Signal.- 2.2.1 Signal Generation.- 2.2.2 Signal Propagation.- 2.3 Physicochemical and Biological Photoacoustic Effects.- 3 Measuring Systems.- 3.1 Excitation Sources.- 3.2 Detectors.- 3.2.1 Contact Detectors.- 3.2.2 Acoustic Detectors.- 3.2.3 Probe Beam Detection.- 3.2.4 Photothermal Radiometry.- 3.2.5 Photoacoustic and Photothermal Imaging.- 3.3 Signal Processing.- 4 Applications in Plant Analysis.- 4.1 Detection of Spectral Properties.- 4.1.1 Detection of Pigment Composition.- 4.1.2 Detection of Particular Components.- 4.1.3 Depth Profile Analysis.- 4.1.4 Photoacoustic Imaging of Plant Material.- 4.2 Detection of Thermal Properties.- 4.3 Detection of Physiological Parameters.- 4.3.1 Action Spectra.- 4.3.2 Photosynthetic Parameters.- 4.3.3 Kinetic Analysis.- 4.3.4 Quantum Yields.- 4.3.5 Other Parameters.- 5 Further Development.- References.- Membrane Operational Impedance Spectra of Plant Cells.- 1 Introduction.- 2 The Laplace Transform.- 3 Measuring Techniques.- 3.1 Current Clamp and Voltage Clamp Techniques.- 3.2 Instrumentation.- 3.2.1 Operational Amplifier.- 3.2.2 Sample-and-Hold.- 3.2.3 Analog to Digital Converter.- 4 Data Analysis Technique.- 4.1 Theory.- 4.1.1 Complex Impedance.- 4.1.2 Operational Impedance.- 4.2 Experimental Method.- 4.2.1 Data Acquisition.- 4.2.2 Computations.- 4.2.3 Example.- 5 The Concept of Membrane Capacitance.- 6 Conclusion.- References.- Image Instrumentation Methods of Plant Analysis.- 1 Introduction.- 2 Image Sensor Selection and Processing System.- 2.1 Image Sensor and Plant Information.- 2.2 Image Processing System.- 3 TV Spectral Image Instrumentation.- 3.1 Types and Features of TV Cameras.- 3.2 Spectroradioanalyzer for Field Measurement.- 3.3 Image Instrumentation of Plant Growth and Shape.- 3.4 Image Instrumentation of Visible Leaf Injury.- 4 Remote-Control Light Microscope System.- 4.1 Outline of the System and Its Performance.- 4.2 Continuous Observation of Guard and Epidermal Cells.- 5 Image Instrumentation of Chlorophyll Fluorescence Transients.- 5.1 Outline of the System and Its Performance.- 5.2 Diagnosis of Photosynthetic System.- 6 Thermal Image Instrumentation.- 6.1 Method for Measuring Plant Temperature and Its Accuracy.- 6.2 Evaluation of Stomatal Response, Transpiration, and Gas Sorption.- 7 Computed Tomography.- 7.1 Instrumentation of Living Trees by X-Ray CT.- 7.2 Instrumentation of Root Systems and Soil Moisture by MRI.- References.- Energy Dispersive X-Ray Analysis.- 1 Introduction.- 1.1 Capabilities.- 1.2 History of EDX Analysis.- 1.3 Applications of the Technique.- 1.4 The EDX Equipment.- 2 Principles — Application and Physics.- 2.1 Specimen — Electron Interaction.- 2.2 Excitation and Emission of X-Rays.- 2.3 Characteristics X-Rays.- 2.4 Spatial Resolution of the X-Rays.- 2.5 Detection.- 2.6 Specimen Independent Spectral Features.- 3 The Specimen.- 3.1 Introduction.- 3.2 Support Material and Adhesives.- 3.3 Fresh Specimens.- 3.4 Heat or Air Drying.- 3.5 Dehydration.- 3.6 “Chelation” and Ion Precipitation.- 3.7 Formless Specimens.- 3.8 Cryopreparation.- 3.8.1 Applicability.- 3.8.2 Preparation for Freezing.- 3.8.3 Freezing.- 3.8.4 SEM-EDX Analysis of Frozen Hydrated Specimens.- 3.8.5 Freeze Drying and Freeze-Dried Embedding.- 3.8.6 Cryosectioning.- 3.8.7 Use of Cryosections.- 4 The Spectrum.- 4.1 Calibration of the Detector.- 4.2 System Peaks and Bremsstrahlung.- 4.3 Adjustment of the Analyzer.- 4.3.1 Electron Image.- 4.3.2 Voltage of Instrument.- 4.3.3 Detector-Specimen Distance and Angle.- 4.3.4 Electron Beam Diameter.- 4.3.5 Acquisition Time.- 4.3.6 Selection of Magnification and Area of Acquisition.- 4.4 Analysis of the Spectrum.- 4.4.1 Aims.- 4.4.2 Peak Identification.- 4.4.3 Background Subtraction.- 4.4.4 Optimization of the Spectrum.- 5 Maps and Line Scans.- 5.1 Application.- 5.2 The Specimen.- 5.3 Selection of X-Rays for Line Scanning or Mapping.- 5.4 Map or Line Acquisition.- 5.5 Interpretation of the Map or Line.- 6 Quantitative Analysis.- 6.1 The Measurements.- 6.2 The Specimen.- 6.3 The Analysis.- 6.3.1 Counts per Channel.- 6.3.2 Relative Amounts.- 6.3.3 Absolute Amounts.- 7 Alternatives to EDX.- 7.1 Using X-Ray and EM Techniques.- 7.2 Cytochemistry.- 7.3 Bulk Analysis.- 8 Conclusions.- References.
1997-2024 DolnySlask.com Agencja Internetowa