ISBN-13: 9783642726125 / Angielski / Miękka / 2011 / 804 str.
ISBN-13: 9783642726125 / Angielski / Miękka / 2011 / 804 str.
1977 saw the publication of "A Collection of Methods for Water Analysis," a three-volume work in ring-binder form compiled by W. Fresenius and W. Schneider for the GTZ (Deutsche Gesellschaft fUr Technische Zusammenarbeit), 6236 Eschborn 1, FRG. This publication was geared to the needs of a project in Algeria. More recently, the editors were requested by the GTZ to produce, on the basis of the previous collection of the water analysis methods, which was published in French, an updated and revised version to be used in different partner countries and for publication in 1985/86. This was not only to take account of advances in water analysis and instrumental techniques, but also to include simple methods of analysis for use in the field, and methods suitable for use in laboratories with relatively unsophisticated equipment. The approach envisaged by the GTZ was to divide up information on water, water supplies and water analysis into three broad groups, namely: 1. Simple modules on the physics and chemistry of water, water hygiene and water analysis capable of being understood and applied in practice by the layman using suitable chemi cals and equipment (W. Schneider). 2. Information to supplement work by Rump-Krist, also commissioned by the GTZ, on water analysis methods which could be used in laboratories with simple equipment, particularly in the Third World (Verlag Chemie, Weinheim, FRG, 1986)."
1 Introduction, Sampling, Local Testing, etc..- 1.1 General.- 1.1.1 Water resources.- 1.1.2 Water management.- 1.1.3 Water analyses.- 1.2 Local inspection and sampling of water.- 1.2.1 Sampling of water.- 1.2.2 Local investigations.- 1.2.3 Geology and Hydrogeology.- 1.2.4 Technical information on the water resource.- 1.2.5 Possibilities of environmental influences on the water resource.- 1.2.6 Hygienic considerations.- 1.3 Techniques of water sampling.- 1.3.1 General.- 1.3.2 Bottle material.- 1.3.3 Techniques of sampling.- 1.4 Water sampling in practice.- 1.4.1 Local investigations.- 1.4.2 Sampling for microbiological analysis of water.- 1.4.3 Sampling for physico-chemical analyses.- 1.4.4 Sampling for chemical analyses (see also 1.3).- 1.4.5 Water sampling for gas analyses.- 1.4.6 Radioactive inert gases.- 1.5 Special instructions for sampling water of various origins and for various investigation purposes.- 1.5.1 Surface water.- 1.5.2 Ground water.- 1.5.3 Salt water.- 1.5.4 Bathing water.- 1.5.5 Industrial water.- 1.5.6 Irrigation.- 1.5.7 Expanses of water devoted to fish cultivation.- 1.5.8 Waste water.- 1.5.9 Sludge.- 1.6 Local investigations (see also 1.7).- 1.6.1 Preservation of water samples.- 1.6.2 Inorganic substances contained in the water.- 1.6.3 Organic substances contained in the water.- 1.6.4 Radioactivity.- 1.7 Local analyses (see also 1.6).- 1.7.1 Sensory examination on site.- 1.7.2 Colouring.- 1.7.3 Transparency and turbidity.- 1.7.4 Temperature.- 1.7.5 Hydrogen-ion activity (pH) (cf. also Chapter 2).- 1.7.6 Electrical conductivity.- 1.7.7 Redox potential.- 1.7.8 Oxygen (cf. also Section 3.6).- 1.7.9 Ozone.- 1.7.10 Chlorine.- 1.7.11 Determination of chlorine dioxide (ClO2) and chlorite (ClO2?).- 1.7.12 Carbon dioxide (CO2), titrimetric determining process on site (cf. also Section 3.6).- 1.7.13 p- and m-values (acid-base consumption, $$HC{O_{{3^ - }}}$$ and CO32?).- 1.7.14 Corrosive carbonic acid.- 1.7.15 Settleable substances.- 1.7.16 The investigation of wastes and sludges in the context of water pollution.- 1.7.17 The importance of site inspections for biological assessment of water resources (cf. also Section 1.2, 1.4 and 1.5 above).- 2 Theoretical Introduction to Selected Methods of Water Analysis (Classic and Instrumental Methods).- 2.1 Concentration processes such as evaporation, distillation, precipitation, coprecipitation, adsorption, ion exchange and extraction.- 2.1.1 Evaporation.- 2.1.2 Distillation.- 2.1.3 Precipitation.- 2.1.4 Coprecipitation.- 2.1.5 Adsorption and ion exchange.- 2.1.6 Extraction.- 2.1.7 Volumetric analysis.- 2.2 Electrochemical processes of analysis.- 2.2.1 Introduction.- 2.2.2 Coulometry.- 2.2.3 Potentiometry.- 2.2.3.1 Ion-sensitive electrodes.- 2.2.4 Polarography.- 2.3 Spectrophotometry (or photometry).- 2.3.1 Measurable variables of light absorption.- 2.3.2 The Lambert-Beer Law.- 2.3.3 Design and mode of operation of an absorption spectrophotometer.- 2.3.4 Photoelectric photometers.- 2.3.5 Evaluation.- 2.4 Flame-emission spectrophotometry (FES).- 2.4.1 Design of the instrument.- 2.4.2 Evaluation.- 2.5 Emission spectrum analysis.- 2.6 X-ray Fluorescence Analysis.- 2.7 Atomic Absorption Spectrometry (AAS).- 2.7.1 Design of the equipment.- 2.7.2 Scope.- 2.7.3 General aspects of calibration and analysis.- 2.7.4 AAS measurements using the graphite furnace technique.- 2.7.5 Example of an AAS measuring system after Perkin-Elmer.- 2.8 Atomic Emission Spectrometry with Inductively Coupled Plasma Excitation (ICP-AES).- 2.8.1 General.- 2.8.2 Equipment.- 2.8.3 Analytical limits.- 2.9 Fluorescence Spectrometry.- 2.9.1 Equipment.- 2.9.2 Interference.- 2.10 Infrared Spectroscopy.- 2.10.1 General remarks.- 2.10.2 Evaluation of an IR spectrum.- 2.10.3 Preparation and handling of the samples.- 2.11 Chromatographic methods.- 2.11.1 General.- 2.11.2 The main chromatographic techniques used in water analysis.- 2.11.3 General comments on GC-MS techniques in water analysis.- 2.12 Introduction to gas chromatography.- 2.12.1 Principles and definition of the method.- 2.12.2 Structure of gas-chromatographic apparatus.- 2.12.3 Identification of sample components.- 2.12.4 Determination of sample concentrations.- 2.12.5 Sensitivity.- 2.12.6 Speed of analysis and automation.- 2.12.7 Theory of the chromatographic process.- 2.12.8 The separation process.- 2.12.9 General remarks on the formation of the peak shape.- 2.12.10 The partition isotherms.- 2.12.11 Causes of peak broadening.- 2.12.12 The van Deemter equation.- 2.12.13 The number of theoretical plates.- 2.12.14 The efficiency or selectivity of the liquid phase.- 2.12.15 The resolution equation.- 2.12.16 General remarks on GC detectors.- 2.12.16.1 Flame ionization detector (FID).- 2.12.16.2 Electron capture detector (ECD).- 2.12.16.3 Thermionic detector (TSB) and alkali flame ionization detector (AFID).- 2.12.16.4 Flame-photometric detector (FPD).- 2.12.16.5 Thermal conductivity detector.- 2.12.16.6 Microcoulometric detector.- 2.12.16.7 Mass-selective detector.- 2.12.17 Theoretical considerations regarding detectors.- 2.12.17.1 General remarks.- 2.12.17.2 Characteristic parameters of detectors.- 2.13 Gas-chromatographic headspace analysis (cf. also Chapter 4).- 2.13.1 General remarks.- 2.13.2 Area of application.- 2.14 High-performance liquid chromatography (HPLC).- 2.14.1 Basic principles.- 2.14.2 Retention.- 2.14.3 Separation mechanisms.- 2.15 Ion chromatography.- 2.15.1 Ion chromatographs with suppressor.- 2.15.2 Ion chromatography without suppressor.- 2.15.3 Anion separation.- 2.15.4 Examples.- 2.16 Radiochemical analysis of water samples (Introduction).- 2.16.1 General information.- 2.16.2 Types of radiation.- 2.16.3 Radionuclides in water.- 2.16.4 Units of measurement.- 2.16.5 Radioactive decay.- 2.16.6 Enrichment of radionuclides.- 2.16.7 Measuring preparations.- 2.16.8 Total determination.- 2.16.9 Safety regulations.- 2.16.10 Radiation protection.- 2.16.11 Detectors and measuring equipment.- 2.17 Enzymatic Analysis.- 3 Inorganic Parameters.- 3.1 Total parameters.- 3.1.1 Turbidity measurements (see also Section 1.7.5).- 3.1.2 Density.- 3.1.3 Total determination of dissolved and undissolved substances.- 3.1.3.1 Undissolved substances.- 3.1.3.2 Cumulative determination of dissolved substances with cation exchangers.- 3.1.4 Sulphide sulphur (H2S, HS?, S2?) (see also Chapter 1 and Section 3.6).- 3.1.4.1 Iodometric determination of sulphide sulphur.- 3.1.4.2 Spectrophotometric analysis of sulphide sulphur as methylene blue.- 3.1.5 Water “hardness” (see also Chapter 1, and Sections 3.2 and 3.3).- 3.2 Anions.- 3.2.1 Fluoride.- 3.2.1.1 Spectrophotometric determination with lanthanum alizarin complexone, directly or following steam acid distillation.- 3.2.1.2 Determination of the fluoride ion with an ion-selective (ion-sensitive) electrode.- 3.2.1.3 Ion chromatography determination of fluoride ions (see Section 3.2.11).- 3.2.2 Chloride.- 3.2.2.1 Gravimetric determination.- 3.2.2.2 Volumetric determination with silver nitrate (electometric indication).- 3.2.2.3 Volumetric determination with silver nitrate and potassium chromate (visual indication).- 3.2.2.4 Ion chromatography determination (see Section 3.2.11).- 3.2.3 Bromide and iodide.- 3.2.3.1 Consecutive iodometric determination of bromide and iodide in one solution.- 3.2.3.2 Ion chromatography (see Section 3.2.11).- 3.2.4 Nitrite.- 3.2.4.1 Spectrophotometric analysis with sulphanilic acid and 1-naphthylamine.- 3.2.4.2 Ion chromatography (see Section 3.2.11).- 3.2.5 Nitrate.- 3.2.5.1 Spectrophotometric analysis with sodium salicylate.- 3.2.5.2 Nitrate with 2,6-dimethylphenol.- 3.2.5.3 Determination of nitrate after reductive distillation.- 3.2.5.4 Ion chromatography (see Section 3.2.11).- 3.2.6 Sulphite.- 3.2.6.1 Iodometric determination of sulphite.- 3.2.6.2 Gravimetric determination as barium sulphate after distillation.- 3.2.6.3 Polarographic determination of sulphite (including sulphide and thiosulphate).- 3.2.7 Sulphate.- 3.2.7.1 Gravimetric Determination as Barium Sulphate.- 3.2.7.2 Nephelometric Determination of Sulphate.- 3.2.7.3 Ion chromatography (see Section 3.2.11).- 3.2.8 Phosphate.- 3.2.8.1 Orthophosphate (calculated as hydrogen phosphate).- 3.2.8.2 Sum of orthophosphate and hydrolyzable phosphorus compounds.- 3.2.8.3 Total phosphorus.- 3.2.8.4 Phosphate determination using ion chromatography (see Section 3.2.11).- 3.2.8.5 ICP-AES (see Section 3.3.12).- 3.2.9 Carbonic acid, hydrogen carbonate and carbonate (see also Chapter 1 and Section 3.6).- 3.2.9.1 Acid consumption (alkalinity).- 3.2.9.2 Acid consumption and base consumption (p and m value).- 3.2.9.3 Acidimetric determination of carbonate ions and hydrogen carbonate ions (p and m values).- 3.2.9.4 Base comsumption (acidity).- 3.2.10 Total carbon dioxide (see also 3.6, carbon dioxide).- 3.2.10.1 Calculation of Sc (diss. CO2) from the p and m value.- 3.2.10.2 Volumetric determination after distillation.- 3.2.10.3 Gravimetric determination after distillation.- 3.2.11 Ion Chromatography of seven anions.- 3.3 Cations.- 3.3.1 Lithium.- 3.3.1.1 Determination by flame photometry.- 3.3.1.2 Direct determination of lithium by means of atomic-absorption analysis.- 3.3.1.3 Lithium determination with the graphite tube technique (Furnace method).- 3.3.2 Sodium.- 3.3.2.1 Flame photometry.- 3.3.2.2 Direct determination of sodium by means of atomic-absorption analysis.- 3.3.2.3 ICP-AES (see Section 3.3.12).- 3.3.3 Potassium.- 3.3.3.1 Determination by flame photometry.- 3.3.3.2 Direct determination of potassium by means of atomic-absorption analysis.- 3.3.3.3 ICP-AES (see Section 3.3.12).- 3.3.4 Rubidium and caesium.- 3.3.4.1 Determination by flame photometry.- 3.3.4.2 Determination of rubidium and caesium in water samples by means of AAS.- 3.3.4.3 Direct determination of rubidium by means of atomic-absorption analysis.- 3.3.4.4 Direct determination of caesium by means of atomic-absorption analysis.- 3.3.4.5 Basis of the method of concentration.- 3.3.5 Ammonium (ammonia).- 3.3.5.1 Photometric determination of NH4+ as indophenol.- 3.3.5.2 Acidimetric determination of NH4+ or NH3 after distillation.- 3.3.6 Magnesium.- 3.3.6.1 Direct determination of magnesium by means of atomic-absorption analysis.- 3.3.6.2 Complexometric analysis (see Calcium, Section 3.3.7).- 3.3.6.3 ICP-AES (see Section 3.3.12).- 3.3.7 Calcium.- 3.3.7.1 Direct determination of calcium by means of atomic-absorption analysis..- 3.3.7.2 Chelatometric determination of calcium ions and magnesium ions.- 3.3.7.3 ICP-AES (see Section 3.3.12).- 3.3.8 Strontium.- 3.3.8.1 Direct determination by means of atomic-absorption analysis.- 3.3.8.2 Determination by flame photometry.- 3.3.8.3 ICP-AES (see Section 3.3.12).- 3.3.9 Barium.- 3.3.9.1 Direct determination of barium by means of atomic-absorption analysis.- 3.3.9.2 Method of enrichment of barium.- 3.3.9.3 Barium determination with the graphite tube technique (Furnace method).- 3.3.9.4 ICP-AES (see Section 3.3.12).- 3.3.10 Iron.- 3.3.10.1 Direct determination of iron by means of atomic-absorption analysis.- 3.3.10.2 Iron determination with the graphite tube technique (Furnace method).- 3.3.10.3 Spectrophotometric determination of iron (II) ions with 2,2’-bipyridyl (Fresenius-Schneider).- 3.3.10.4 Spectrophotometric determination of total iron with 2,2’-bipyridyl.- 3.3.10.5 Spectrophotometric determination of total iron with thioglycolic acid.- 3.3.10.6 ICP-AES (see Section 3.3.12).- 3.3.11 Manganese.- 3.3.11.1 Direct determination of manganese by means of atomic-absorption analysis.- 3.3.11.2 Manganese determination with the graphite tube technique (Furnace method).- 3.3.11.3 Spectrophotometric determination as permanganate following oxidation by peroxodisulphate.- 3.3.11.4 ICP-AES (see Section 3.3.12).- 3.3.12 Atomic-emission spectrometry with inductively coupled plasma (ICP-AES, see also Chapter 2).- 3.4 Trace substances (inorganic) (For ICP-AES determination of 24 elements see Section 3.3.12).- 3.4.1 Trace detection of elements in parallel by emission spectrography survey analysis (see also Chapter 2).- 3.4.1.1 Concentration by trace precipitation.- 3.4.1.2 Concentration by extraction.- 3.4.2 Aluminium.- 3.4.2.1 Direct determination by means of atomic-absorption analysis.- 3.4.2.2 Aluminium determination with the graphite tube technique (Furnace method).- 3.4.2.3 Spectrophotometric determination with eriochromcyanine R.- 3.4.3 Arsenic.- 3.4.3.1 Determination of arsenic using the hydride AAS technique.- 3.4.3.2 Spectrophotometric determination of total arsenic with silver diethyl dithiocarbamate.- 3.4.3.3 Iodometric determination of arsenic (III).- 3.4.3.4 Separating arsenic (III) and arsenic (V).- 3.4.4 Antimony.- 3.4.4.1 Determination of antimony using the hydride AAS technique.- 3.4.4.2 Spectrophotometric determination with rhodamine B.- 3.4.5 Beryllium.- 3.4.5.1 Direct determination by means of atomic-absorption analysis.- 3.4.5.2 Basis of the method of concentration.- 3.4.5.3 Beryllium determination with the graphite tube technique (Furnace method).- 3.4.5.4 Spectrophotometric determination using chromazurol S.- 3.4.6 Lead.- 3.4.6.1 Spectrophotometric determination of lead with dithizone.- 3.4.6.2 Direct determination by means of atomic-absorption analysis.- 3.4.6.3 Basis of the method of concentration.- 3.4.6.4 Lead determination with the graphite tube technique (Furnace method).- 3.4.6.5 ICP-AES see Section 3.3.12.- 3.4.7 Cadmium.- 3.4.7.1 Direct determination by means of atomic-absorption analysis.- 3.4.7.2 Cadmium determination with the graphite tube technique (Furnace method).- 3.4.7.3 Spectrophotometric determination of cadmium with dithizone.- 3.4.7.4 ICP-AES see Section 3.3.12.- 3.4.8 Chromium.- 3.4.8.1 Direct determination by means of atomic-absorption analysis.- 3.4.8.2 Total chromium.- 3.4.8.3 Determination of hexavalent chromium.- 3.4.8.4 Chromium determination with the graphite tube technique (Furnace method).- 3.4.8.5 Photometric determination of total chromium using diphenyl carbazide.- 3.4.8.6 ICP-AES (see Section 3.3.12).- 3.4.9 Germanium.- 3.4.9.1 Determination of germanium by emission spectrography.- 3.4.9.2 Determination of germanium using graphite-tube AAS technique.- 3.4.10 Cobalt.- 3.4.10.1 Spectrophotometric determination as thiocyanate/tetraphenyl arsonium complex.- 3.4.10.2 Direct determination of cobalt by means of atomic-absorption flame analysis.- 3.4.10.3 Cobalt determination with the graphite tube technique (Furnace method).- 3.4.10.4 ICP-AES see Section 3.3.12.- 3.4.11 Copper.- 3.4.11.1 Direct determination by means of atomic-absorption flame analysis.- 3.4.11.2 Copper determination with the graphite-tube technique (Furnace method).- 3.4.11.3 Spectrophotometric determination using NaDDTC.- 3.4.11.4 ICP-AES see Section 3.3.12.- 3.4.12 Molybdenum.- 3.4.12.1 Spectrophotometric determination as a molybdenum (V) thiocyanate complex.- 3.4.12.2 Direct determination of molybdenum by means of atomic-absorption flame analysis.- 3.4.12.3 Principle of the method of extractive concentration.- 3.4.12.4 ICP-AES see Section 3.3.12.- 3.4.13 Nickel.- 3.4.13.1 Spectrophotometric determination with diacetyl dioxime (dimethylglyoxime).- 3.4.13.2 Direct determination by means of atomic-absorption flame analysis.- 3.4.13.3 Method with concentration.- 3.4.13.4 Nickel determination with the graphite tube technique (Furnace method).- 3.4.13.5 ICP-AES see Section 3.3.12.- 3.4.14 Mercury.- 3.4.14.1 Mercury AAS with cold vapour method.- 3.4.15 Selenium.- 3.4.15.1 Determination of selenium using the hydride AAS technique.- 3.4.15.2 Spectrophotometric determination of selenium with o-phenylenediamine.- 3.4.16 Silver.- 3.4.16.1 Direct determination of silver by means of atomic absorption flame analysis.- 3.4.16.2 Silver determination with the graphite tube technique (Furnace method).- 3.4.16.3 Spectrophotometric determination with dithizone.- 3.4.16.4 ICP-AES (see Section 3.3.12).- 3.4.17 Thallium.- 3.4.17.1 Direct determination of thallium by means of atomic-absorption analysis..- 3.4.17.2 Thallium determination with the graphite tube technique (Furnace method).- 3.4.17.3 Determination of thallium by inversion voltammetry.- 3.4.17.4 Determination of thallium with X-ray-fluorescence analysis.- 3.4.18 Titanium.- 3.4.18.1 Photometric determination of titanium.- 3.4.18.2 ICP-AES (see Section 3.3.12).- 3.4.19 Uranium (see also Section 3.7).- 3.4.19.1 Fluorimetric determination of uranium in a sodium fluoride/alkali carbonate melt.- 3.4.20 Vanadium.- 3.4.20.1 Direct determination of vanadium by means of atomic absorption analysis..- 3.4.20.2 Concentration: Principle of the method of extractive concentration.- 3.4.20.3 Vanadium determination with the graphite tube technique (Furnace method).- 3.4.20.4 ICP-AES (see Section 3.3.12).- 3.4.21 Zinc.- 3.4.21.1 Spectrophotometric determination with dithizone.- 3.4.21.2 Direct determination by means of atomic-absorption analysis.- 3.4.21.3 Zinc determination with the graphite-tube technique (Furnace method).- 3.4.21.4 ICP-AES (see Section 3.3.12).- 3.4.22 Tin (Sn).- 3.4.22.1 Turbidimetric determination with nitrophenol arsonic acid (iP no AAS facilities are available).- 3.4.22.2 Direct determination of tin by means of atomic-absorption analysis.- 3.4.22.3 Determination of tin using the AAS hydride technique.- 3.4.23 Zirconium (Zr).- 3.5 Undissociated substances (for H2S see also Sections 3.1 and 3.6).- 3.5.1 Boron compounds.- 3.5.1.1 Spectrophotometric determination with 1,1’-dianthrimide.- 3.5.1.2 Spectrophotometric determination with azomethine-H.- 3.5.1.3 Volumetric determination following distillation.- 3.5.1.4 Extraction of boron.- 3.5.1.5 ICP-AES (see Section 3.3.12).- 3.5.2 Silicic acid.- 3.5.2.1 Spectrophotometric analysis with ammonium molybdate.- 3.5.2.2 Gravimetric determination as silicon dioxide (silica).- 3.6 Gaseous Substances.- 3.6.1 Sampling and gas-chromatographic analysis.- 3.6.2 Carbon dioxide (see also Chapter 1 and Section 3.2).- 3.6.2.1 Direct titration with sodium hydroxide solution.- 3.6.2.2 Alternative: Gas diffusion method.- 3.6.2.3 Back-titration method for the determination of “free, dissolved carbon dioxide”.- 3.7 Radioactivity measurements in water (see also Chapter 2).- 3.7.1 General.- 3.7.1.1 General guidelines.- 3.7.2 ?-activity.- 3.7.2.1 Direct measurement of radon 222.- 3.7.2.2 Radium 226.- 3.7.2.3 De-emanation of water sample (isolation of radon 222).- 3.7.3 Measurement of ??-activity of water samples.- 3.7.3.1 Analysis of radioactive strontium and barium in water samples.- 3.7.3.2 Rapid method of estimating strontium 90 content in water.- 3.7.4 Other radionuclides in water (General analytical information).- 3.7.5 Measurement of radionuclides in water.- 3.7.5.1 Radionuclide determination in water.- 3.7.5.2 Total activity or individual nuclide determination.- 3.7.5.3 Criteria governing the selection of the detection method.- 3.7.5.4 Modern measuring instruments for determining total activity?.- 3.7.5.5 Detection limit in theory and practice.- 3.7.5.6 Notes on measurement.- 4 Organic Parameters.- 4.1 Overall organic parameters.- 4.1.1 TOC/DOC (Total Organic Carbon/Dissolved Organic Carbon).- 4.1.2 Oxidizable Organic Substances.- 4.1.2.1 Oxidizability.- 4.1.2.2 Chemical oxygen demand (COD).- 4.1.3 Biochemical oxygen demand (BOD).- 4.1.4 UV absorption.- 4.1.5 Determination of organically bound halogens as overall parameters (EOX/AOX).- 4.1.6 Cyanide.- 4.1.6.1 General.- 4.1.6.2 Total cyanide.- 4.1.6.3 Spectrophotometric method of analysis using barbituric acid-pyridine in the distillate.- 4.1.6.4 Volumetric analysis using silver nitrate.- 4.1.6.5 Easily released cyanide.- 4.1.6.6 Spectrophotometric analysis using barbituric acid-pyridine.- 4.1.7 Detergents (surfactants).- 4.1.7.1 Determination of total detergents (surfactants).- 4.1.7.2 Photometric determination of anionic detergents (surfactants) with methylene blue (Methylene blue active substances, MBAS).- 4.1.7.3 Determination of nonionic detergents (surfactants).- 4.1.7.4 Cationic detergents (surfactants) after ion exchange.- 4.1.8 Determination of hydrocarbons (Oil and greaselike extractable substances).- 4.1.8.1 Gravimetric determination following extraction with n-hexane.- Appendix 1 to Method 4.1.8.1 (Extraction with n-hexane).- Appendix 2 to Method 4.1.8.1 and to Appendix 1.- Appendix 3 to Method 4.1.8.1 and Appendix 1.- 4.1.8.2 Determination of hydrocarbons by infrared intensity spectroscopy.- 4.1.8.3 Determination of hydrocarbons (measurement of UV fluorescence).- 4.1.9 Phenol (phenol index).- 4.1.9.1 Determination of phenol-type substances which are capable of coupling, in natural waters, with p-nitroaniline.- 4.1.9.2 Phenol index with 4-aminoantipyrine without extraction after steam distillation.- 4.1.9.3 Phenol index with 4-aminoantipyrine after extraction and also if necessary after distillation.- 4.1.9.4 Separation by gas chromatography of phenol-type substances including halogenated phenols (see Section 4.2).- 4.1.10 Nitrogen compounds.- 4.1.11 Organic acids.- 4.1.11.1 Determination of organic acids which are volatile with steam.- 4.1.11.2 Quantitative analysis of organic acids after separation by column chromatography.- 4.1.11.3 Analysis of organic acids using gas chromatography.- 4.1.12 Isolation and measurement of humic substances.- 4.1.13 Urochrome.- 4.2 Organic compounds.- 4.2.1 Polycyclic aromatic hydrocarbons.- 4.2.1.1 Detection of polycyclic aromatic hydrocarbons using thin-layer chromatography.- 4.2.1.2 Determination using high pressure liquid chromatography.- 4.2.2 Determination of phenols in water (see also Section 4 1 9).- 4.2.3 Determination of aromatic hydrocarbons, kerosene, heating oil, diesel oil or petrol (gasoline) etc. in water.- 4.2.4 Systematic determination of highly volatile halogenated hydrocarbons (HHC) in water samples using gas chromatography.- 4.2.5 Determination of nitroaromatics and higher-boiling halogenated compounds in water.- 4.2.6 System of determination of organochlorine pesticides, organophosphorus pesticides and triazines in water.- 4.2.7 System for the determination of phenylurea and herbicidal carbamates in water.- 4.2.8 System for the determination of phenoxyalkane carboxylic acids in water.- 4.2.9 Determination of pesticides in water by gas chromatography according to the methods of the Deutsche Forschungsgemeinschaft (German Research Society GRS).- 4.2.10 Organophosphorus pesticides, thiophosphoric acid esters, chlorinated hydrocarbons and triazine herbicides.- Appendix to 4.2.9 and 4.2.10.- 4.2.11 Gas chromatography head-space analysis.- 4.2.12 Determination of plasticizers in water.- 4.2.13 Determination of antioxidants in water.- 4.2.14 Enzymatic determination of urea.- 5 Biological Analysis.- 5.1 Significance of biological and ecological investigations when evaluating the quality of flowing water.- 5.1.1 Significance of worm eggs in waste water, sewage sludge, surface water, swimming-pool water, drinking water and process water.- 5.1.2 A clear classification of water quality was published in 1985 by the West German organization “Länderarbeitsgemeinschaft Wasser” — LAWA (Water Study Group of the German Federal States).- 5.2 Microbiological water analysis.- 5.2.1 General remarks.- 5.2.2 Microorganisms in water.- 5.2.3 Direct counting of germs.- 5.2.4 Indirect methods of counting germs.- 5.2.5 Indicator germs.- 5.2.6 General requirements for microbiological work.- 5.2.7 Taking and transporting water samples for microbiological investigations.- 5.2.8 Performing the microbiological analysis of the water.- 5.2.8.1 Determining the total colony counts.- 5.2.8.2 Detection of Escherichia coli and coliform bacteria.- 5.2.8.3 Detection of faecal streptococci.- 5.2.8.4 Detection of sulphite-reducing, spore-forming anaerobes.- 5.2.8.5 Detection of Pseudomonas aeruginosa.- 5.2.8.6 Occurrence, significance and detection of sulphate-reducing bacteria.- 5.2.8.7 Autotrophic microorganisms in water.- 5.2.8.8 Sulphur bacteria.- 5.2.8.9 Distribution of worm parasites.- 5.2.9 Preparation of culture solutions and culture media.- 5.2.10 Prepared culture media.- 5.2.11 Detection reagents for biochemical reactions.- 5.2.12 Work sheets for microbiological water analysis.- 5.2.12.1 Sheet 1— Taking and handling samples.- 5.2.12.2 Sheet 2 — Determining the colony count.- 5.2.12.3 Sheet 3 — Detection of Escherichia coli and coliform bacteria.- 5.2.12.4 Sheet 4 — Detection of faecal streptococci, Pseudomonas aeruginosa and sulphite-reducing Clostridia.- 5.2.12.5 Sheet 5 — Cleaning with sterilization.- 5.3 Biological toxicity tests.- 5.3.1 Bacterial inhibiting tests.- 5.3.1.1 Respirometric measurements.- 5.3.1.2 Test using Pseudomonas fluorescens.- 5.3.2 Fish test for sewage.- 6 Evaluation of Analysis Data.- 6.1 Introduction to statistical evaluation.- 6.2 Applications of statistical methods in water analysis.- 6.2.1 Calibration.- 6.2.2 Calibration when using new methods of analysis.- 6.2.3 Calibration in routine analysis.- 6.2.4 Detection limit and determination limit.- 6.2.5 Blank values.- 6.2.6 Standard addition.- 6.2.7 Matrix effects.- 6.2.8 Comparison of analytical methods.- 6.2.9 Optimizing analytical methods.- 6.3 Quality control.- 6.3.1 Internal quality control.- 6.3.2 External quality control.- 6.4 Data evaluation.- 6.4.1 Univariate statistical evaluation.- 6.4.2 Bivariate statistical evaluation.- 6.4.3 Multivariate statistical investigations.- 6.4.3.1 Principal component analysis.- 6.4.3.2 Cluster analyses.- 6.4.3.3 Multidimensional discriminatory analysis.- 6.5 Time-series analyses.- 6.6 Technical advice.- 6.7 Assessment of water analysis findings.- 6.7.1 WHO Guidelines for drinking water quality (1984).- 6.7.2 Directive of the Council of the European Communities on the quality of water for human consumption.- 6.7.3 Federal Republic of Germany: Recommendations on halogenated hydrocarbons.- 6.7.4 Treatment of surface water to obtain drinking water.- 6.7.5 Waste water.- 6.7.5.1 Stipulations applying to the discharge of industrial sewage.- 6.7.6 Requirements to be satisfied by bathing waters.- 6.7.6.1 Quality requirements for bathing water.- 6.7.7 Substances used for treating drinking water.- 6.7.8 Concluding remarks.- 7 Subject Index.
Wilhelm Schneider ist Professor am Institut für Strömungslehre und Wärmeübertragung der Technischen Universität Wien. Er wurde im Laufe seiner wissenschaftlichen Karriere vielfach geehrt, u.a. erhielt er die höchste Auszeichnung der Deutschen Gesellschaft für Luft- und Raumfahrt (DGLR) für seine herausragenden Leistungen in Forschung und Lehre auf dem Gesamtgebiet der Thermofluiddynamik. Besonders seine Forschungsarbeiten zu Über- und Hyperschallströmungen, zur Strahlungsgasdynamik, zu Konvektionsströmungen und zu Strömungen mit Phasenumwandlungen wurden gewürdigt.
1997-2024 DolnySlask.com Agencja Internetowa