• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Digital Image Restoration » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Digital Image Restoration

ISBN-13: 9783642635052 / Angielski / Miękka / 2012 / 243 str.

Aggelos K. Katsaggelos
Digital Image Restoration Aggelos K. Katsaggelos 9783642635052 Springer-Verlag Berlin and Heidelberg GmbH &  - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Digital Image Restoration

ISBN-13: 9783642635052 / Angielski / Miękka / 2012 / 243 str.

Aggelos K. Katsaggelos
cena 201,72
(netto: 192,11 VAT:  5%)

Najniższa cena z 30 dni: 192,74
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

The field of digital image restoration is concerned with the reconstruction or estimation of uncorrupted images from noisy, blurred ones. This blurring may be caused by optical distortions, object motion during imaging, or atmospheric turbulence. There are existing or potential applications of image restoration in many scientific and engineering fields, e.g. aerial imaging, remote sensing electron microscopy, and medical imaging. This book describes recent advances and provides a survey of the field. New research results are presented on the formulation of the restoration problem, the implementation of restoration algorithms using artificial neural networks, the derivation and application of nonstationary mathematical image models, the development of simultaneous image and blur parameter identification and restoration algorithms, and the development of algorithms for restoring scanned photographic images. Special attention is paid to issues of numerical instrumentation. A large number of illustrations demonstrate the performance of the restoration approaches.

Kategorie:
Informatyka
Kategorie BISAC:
Computers > Software Development & Engineering - Computer Graphics
Wydawca:
Springer-Verlag Berlin and Heidelberg GmbH &
Seria wydawnicza:
Springer Series in Information Sciences
Język:
Angielski
ISBN-13:
9783642635052
Rok wydania:
2012
Dostępne języki:
Angielski
Wydanie:
Softcover Repri
Numer serii:
000022120
Ilość stron:
243
Waga:
0.40 kg
Wymiary:
23.523.5 x 15.5
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

1. Introduction.- 1.1 The Digital Image Restoration Problem.- 1.2 Degradation Models.- 1.3 Image Models.- 1.4 Ill-Posed Problems and Regularization Approaches.- 1.4.1 Ill-Posed Problems.- 1.4.2 Regularization Approaches.- 1.5 Overview of Image Restoration Approaches.- 1.5.1 Deterministic Restoration Algorithms.- 1.5.2 Stochastic Algorithms.- 1.6 Discussion.- References.- 2. A Dual Approach to Signal Restoration.- 2.1 Background.- 2.2 Application of Convex Programming to Image Restoration.- 2.2.1 The Unified Cost Functional.- 2.2.2 Signal Constraints.- 2.2.3 Noise Constraints.- 2.2.4 Restatement of the Image Restoration Problem.- 2.3 The Dual Approach to Signal Restoration.- 2.3.1 The Primal and Dual Approaches.- 2.3.2 Generating Dual Functionals and Signal Models.- 2.3.3 Signal Models for Common Optimization Criteria.- 2.3.4 Existence and Uniqueness of the Optimally Restored Signal.- 2.4 Numerical Implementation and Results.- 2.4.1 Application of Optimization Algorithms to the Dual Problem.- 2.4.2 Comparison of Restoration Methods.- 2.4.3 Behavior of Optimization Procedures when a Feasible Solution does not Exist.- 2.5 Cost Functionals for Sequential Restoration.- 2.5.1 The Prior Estimate Consistency Condition.- 2.5.2 The Subsequent Estimate Consistency Condition.- 2.5.3 Modifications to the Entropy and Cross Entropy Functionals.- 2.6 Relationship Between the Original and Modified Entropy and Cross Entropy Functionals.- References.- 3. Hopfield-Type Neural Networks.- 3.1 Overview.- 3.2 Outline of the Chapter.- 3.3 The Hopfield-Type Associative Content Addressable Memory.- 3.3.1 Principles of Operation.- 3.3.2 The Methods of Projections onto Convex Sets and Generalized Projections.- 3.3.3 GP Formulation of the Binary Hopfield ACAM.- 3.3.4 POCS Formulation of a Continuous Hopfield ACAM.- 3.3.5 The Hopfield-Type Classifier: The ACAM Followed by a Perceptron.- 3.4 Image Restoration Using a Hopfield-Type Neural Network.- 3.4.1 Energy Reduction Property and Stable States.- 3.4.2 Network Model for Image Restoration.- 3.4.3 Remarks on the Restoration Network.- 3.4.4 Learning the Constraint.- 3.4.5 Simulation Results.- 3.5 Summary and Conclusion.- 3.A Appendices.- 3.A.1 Orthogonalization Learning Rule.- 3.A.2 Projection Operator of Cs.- 3.A.3 Proof of the Monotonicity of ? (?).- 3.A.4 Derivation of (3.68).- References.- 4. Compound Gauss-Markov Models for Image Processing.- 4.1 Overview.- 4.2 Compound Markov Random Fields.- 4.2.1 Compound Gauss-Markov Random Fields.- 4.2.2 Doubly Stochastic Gaussian Random Fields.- 4.3 Joint MAP Estimator.- 4.3.1 Simulated Annealing Approach.- 4.3.2 Deterministic Search for the MAP Estimate.- 4.4 Parameter Identification and Simulation Results.- 4.4.1 Parameter Identification.- 4.4.2 Experimental Results.- 4.5 Texture Segmentation.- 4.5.1 Mathematical Models for Texture Segmentation.- 4.5.2 Supervised and Unsupervised Algorithms.- 4.5.3 Experimental Results.- 4.6 Conclusions.- References.- 5. Image Estimation Using 2D Noncausal Gauss-Markov Random Field Models.- 5.1 Preliminaries.- 5.2 Model Representation.- 5.2.1 The GMRF Model.- 5.2.2 The Compound GMRF Model.- 5.3 Estimation in GMRF Models.- 5.3.1. Coding Method.- 5.3.2 A Consistent Estimation Scheme.- 5.3.3 Maximum Likelihood Estimation of Parameters.- 5.3.4 Parameter Estimation for the Compound Model.- 5.4 Relaxation Algorithms for MAP Estimation.- 5.4.1 Image and Noise Models.- 5.4.2 Stochastic Relaxation.- 5.4.3 Quantization Effects.- 5.4.4 Experimental Results.- 5.5 GNC Algorithm for MAP Estimation of Images Modeled by Compound GMRF.- 5.5.1 Experimental Results.- 5.A Appendices.- 5.A.1 Proof of Theorem 1.- 5.A.2 Proof of Theorem 2.- References.- 6. Maximum Likelihood Identification and Restoration of Images Using the Expectation-Maximization Algorithm.- 6.1 Overview.- 6.2 Image and Blur Models.- 6.3 ML Parameter Identification.- 6.3.1 Formulation.- 6.3.2 Constraints on the Unknown Parameters.- 6.4 ML Identification via the EM Algorithm.- 6.4.1 The EM Algorithm in Review.- 6.4.2 Alternating Optimization of Cross Entropy.- 6.4.3 The EM Algorithm in the Linear Gaussian Case.- 6.5 The EM Iterations for the ML Estimation of ø.- 6.5.1 {x,y} as the Complete Data.- 6.5.2 {x,v} as the Complete Data.- 6.5.3 {Dx, v} as the Complete Data.- 6.5.4 Iterative Wiener Filtering.- 6.6 Modified Forms of the Proposed Algorithm.- 6.6.1 ML Estimation of øAR.- 6.6.2 Spatial Domain Iteration.- 6.6.3 Parameterization of the Image and Blur Models.- 6.7 Experimental Results.- 6.8 Conclusions.- 6.A Appendix: Detailed Derivation of Eqs. (6.43–45).- References.- 7. Nonhomogeneous Image Identification and Restoration Procedures.- 7.1 Image Modeling.- 7.2 Kalman-Type Filtering for Restoration.- 7.2.1 The 2D Kalman Filter for Image Restoration.- 7.2.2 The ROMKF.- 7.2.3 Comparison of the ROMKF with Kalman Filter Implementations.- 7.2.4 Concluding Comment.- 7.3 Parameter Identification.- 7.3.1 Literature Review.- 7.3.2 Identification of Model Parameters.- 7.3.3 Experimental Results.- 7.3.4 Summary.- 7.4 Adaptive Image Restoration.- 7.4.1 Literature Review.- 7.4.2 Adaptive Approaches.- 7.4.3 Experimental Results.- 7.4.4 Summary.- 7.5 Conclusion.- 7.A Appendix: The Kalman Filter I.- References.- 8. Restoration of Scanned Photographic Images.- 8.1 Motivation.- 8.2 Modeling Scanned Blurred Photographic Images.- 8.2.1 Linear Space-Invariant Blur Modeling.- 8.2.2 Effect of Photographic Film Characteristics.- 8.2.3 Scanner Characteristics and Noise.- 8.3 Restoration of Photographic Images: Theory.- 8.3.1 The Domain for Deconvolution.- 8.3.2 Deconvolution with Multiplicative Noise.- 8.3.3 Suboptimal Restoration in the Exposure Domain.- 8.4 Restoration of Photographic Images: Practice.- 8.4.1 Blur Identification.- 8.4.2 Estimation of Other Filter Parameters and Procedure.- 8.4.3 Limitations in Restoring Photographically Blurred Images.- 8.5 Results.- 8.6 Conclusion.- References.- Additional References.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia