ISBN-13: 9783642632051 / Angielski / Miękka / 2012 / 658 str.
ISBN-13: 9783642632051 / Angielski / Miękka / 2012 / 658 str.
This book provides a rather comprehensive presentation of the physics and modeling of high-frequency bipolar transistors with particular emphasis given to silicon-based devices. I hope it will be found useful by those who do as well as by those who intend to work in the field, as it compiles and extends material presented in numerous publications in a coherent fashion. I've worked on this project for years and did my best to avoid errors. De spite all efforts it is possible that "something" has been overlooked during copy-editing and proof-reading. If you find a mistake please let me know. Michael Reisch Kempten, December 2002 Notation It is intended here to use the most widely employed notation, in cases where the standard textbook notation is different from the SPICE notation, the latter is used. In order to make formulas more readable, model parameters represented in SPICE by a series of capital letters are written here as one capital letter with the rest in the form of a subscript (e.g. XCJC is used here instead of the XCJC used in the SPICE input). Concerning the use of lower-case and capital letters, the following rules are applied: Time-dependent large-signal quantities are represented by lower-case let ters. The variables 't, v and p therefore denote time-dependent current, voltage and power values."
1. An Introductory Survey.- 1.1 History.- 1.1.1 Early Developments.- 1.1.2 The First Transistors.- 1.1.3 Silicon Transistors.- 1.1.4 Integrated Bipolar Transistors.- 1.1.5 Heterojunction Bipolar Transistors.- 1.1.6 CAD, Device Modeling.- 1.1.7 Applications.- 1.2 Devices, Circuits, Compact Models.- 1.2.1 Circuit Elements.- 1.2.2 Nonlinear Network Elements, Small-Signal Description.- 1.2.3 Two-Ports.- 1.2.4 Device Modeling.- 1.3 Semiconductors.- 1.3.1 Electrons and Holes.- 1.3.2 Thermal Equilibrium.- 1.3.3 Drift and Diffusion Currents.- 1.3.4 Generation and Recombination.- 1.3.5 Basic Semiconductor Equations.- 1.4 PN Junctions.- 1.4.1 PN Junctions in Thermal Equilibrium.- 1.4.2 Forward-Biased PN Junction.- 1.4.3 Reverse-Biased PN Junction.- 1.4.4 Stored Charge.- 1.4.5 Switching, Charge-Control Theory.- 1.4.6 Epitaxial Diodes.- 1.5 Bipolar Transistor Principles.- 1.5.1 Modes of Operation.- 1.5.2 Transfer Current.- 1.5.3 Current Gain.- 1.5.4 Transistor Amplifiers and Switches.- 1.5.5 Leakage Currents.- 1.5.6 Voltage Limits, Breakdown.- 1.5.7 Some Differences of Bipolar Transistors and MOSFETs.- 1.6 Elementary Large-Signal Models.- 1.6.1 The Elementary Transistor Model.- 1.6.2 Current-Voltage Characteristics.- 1.6.3 Charge Storage, Charge Control Model.- 1.6.4 Switching Operation.- 1.7 Elementary Small-Signal Models.- 1.7.1 Admittance Parameters.- 1.7.2 Hybrid Parameters.- 1.7.3 T-Equivalent Circuit.- 1.7.4 Frequency Limits.- 1.8 Noise Modeling.- 1.8.1 Noise and Noise Sources.- 1.8.2 Noise Circuit Analysis.- 1.8.3 Noisy Linear Two-Ports, Noise Figure.- 1.8.4 Bipolar-Transistor Noise Equivalent Circuit.- 1.8.5 Input-Referred Noise Sources.- 1.8.6 Noise Figure.- 1.9 Orders of Magnitude.- 1.10 References.- 2. Semiconductor Physics Required for Bipolar-Transistor Modeling.- 2.1 Band Structure.- 2.1.1 Bloch Functions.- 2.1.2 Temperature Dependence of Bandgap and Intrinsic Carrier Density.- 2.2 Thermal Equilibrium.- 2.2.1 Fermi-Dirac and Boltzmann Statistics.- 2.2.2 Ionization.- 2.3 The Boltzmann Equation.- 2.3.1 Collision Term.- 2.3.2 Thermal Equilibrium.- 2.3.3 Limits of Validity.- 2.3.4 Relaxation Times.- 2.4 The Drift-Diffusion Approximation.- 2.4.1 The Relaxation Time Approximation.- 2.4.2 Transport in Low Electric Fields.- 2.5 Hydrodynamic Model.- 2.5.1 Continuity Equation.- 2.5.2 Current Equation.- 2.5.3 Energy Balance Equation.- 2.6 Generation and Recombination.- 2.6.1 Shockley Read Hall Processes.- 2.6.2 Auger Recombination.- 2.6.3 Impact Ionization.- 2.6.4 Interband Tunneling.- 2.7 Heavily Doped Semiconductors.- 2.7.1 Modification of the Band Structure.- 2.7.2 Bandgap Narrowing in Silicon.- 2.8 Silicon Device Modeling in the Drift-Diffusion Approximation.- 2.8.1 Basic Equations of the Drift-Diffusion Approximation.- 2.8.2 Model Equations for Material Parameters.- 2.8.3 Compact Modeling.- 2.9 References.- 3. Physics and Modeling of Bipolar Junction Transistors.- 3.1 The Regional Approach.- 3.1.1 Drift Transistors — Homogeneous-Field Case.- 3.1.2 Transfer Current in Frequency and Time Domains.- 3.1.3 The Ebers-Moll Model.- 3.1.4 The Charge Control Model.- 3.1.5 Non-Quasi-Static Effects.- 3.2 Transfer Current, Early Effect.- 3.2.1 The Integral Charge Control Relation.- 3.2.2 Forward Operation, Early Voltage.- 3.2.3 Base Charge Partitioning.- 3.3 Emitter-Base Diode, Current Gain.- 3.3.1 Minority-Carrier Transport in Heavily Doped Silicon Emitters.- 3.3.2 Polycrystalline Emitter Contacts.- 3.3.3 Recombination in the Space Charge Layer.- 3.3.4 Reverse-Bias Currents, Breakdown.- 3.4 Base-Collector Diode, Breakdown.- 3.4.1 Multiplication Factor.- 3.4.2 Collector-Emitter Breakdown due to Impact Ionization.- 3.4.3 Punchthrough.- 3.5 Charge Storage, Transit Time.- 3.5.1 Depletion Capacitances.- 3.5.2 Hole Continuity and Cutoff Frequency.- 3.5.3 Forward Transit Time.- 3.6 Series Resistances.- 3.6.1 Emitter Resistance.- 3.6.2 Base Resistance.- 3.6.3 Collector Resistance, Quasi-Saturation.- 3.7 High-Level Injection.- 3.7.1 High-Level Injection in the Base Region.- 3.7.2 High-Level Injection in the Collector Region.- 3.7.3 The Epilayer Model of Kull et al.- 3.8 The Gummel-Poon Model.- 3.8.1 Transfer Current and Current Gain.- 3.8.2 Base Current Components.- 3.8.3 Current Gain.- 3.8.4 Charge Storage.- 3.8.5 Scries Resistances.- 3.8.6 Parameters.- 3.9 Small-Signal Description.- 3.9.1 Giacoletto Small-Signal Equivalent Circuit.- 3.9.2 Admittance Parameters.- 3.9.3 Carrier Multiplication Effects.- 3.9.4 Non-Quasi-Static Effects and Excess Phase.- 3.9.5 Nonlinear Distortion Effects.- 3.10 Figures of Merit.- 3.10.1 Cutoff Frequency.- 3.10.2 Maximum Frequency of Oscillation.- 3.10.3 CML Gate Delay and Power Delay Product.- 3.10.4 Product of Current Gain and Early Voltage.- 3.10.5 Johnson Limit.- 3.11 Temperature Dependences, Self-Heating.- 3.11.1 Temperature Dependences.- 3.11.2 Thermal Equivalent Circuit.- 3.11.3 Mitlaufeffekt, Thermal Runaway.- 3.12 Parameter Extraction — DC Measurements.- 3.12.1 Gummel Plot.- 3.12.2 Output Characteristics, Early Voltage.- 3.12.3 Series Resistances.- 3.12.4 Carrier Multiplication and Open-Base Breakdown.- 3.12.5 Thermal Resistance, Self-Heating Effects.- 3.13 Parameter Extraction — AC Measurements.- 3.13.1 De-Embedding.- 3.13.2 Transit Time.- 3.13.3 Capacitances.- 3.13.4 The Impedance Semicircle Method.- 3.14 The VBIC Model.- 3.14.1 Vertical NPN Transistor.- 3.14.2 Parasitic PNP Transistor.- 3.14.3 Stored Charges.- 3.14.4 Temperature Effects.- 3.15 The HICUM Model.- 3.15.1 Modeling Approach.- 3.15.2 Transfer Current.- 3.15.3 Static Base Current, Parasitic PNP Transistor.- 3.15.4 Series Resistances.- 3.15.5 Charge Storage.- 3.15.6 BC Avalanche Effect.- 3.15.7 Emitter Base Tunneling.- 3.15.8 Temperature Effects.- 3.16 The MEXTRAM Model.- 3.16.1 Transfer Current.- 3.16.2 Base Current Components, Parasitic PNP Transistor.. ..- 3.16.3 Epilayer Description.- 3.16.4 Series Resistances.- 3.16.5 Charge Storage.- 3.16.6 Avalanche Effect.- 3.16.7 Temperature Effects.- 3.16.8 Discussion.- 3.17 References.- 4. Physics and Modeling of Heterojunction Bipolar Transistors.- 4.1 Heterojunctions.- 4.1.1 Thermal Equilibrium.- 4.1.2 Forward-Biased Heterojunction.- 4.1.3 Depletion Capacitance.- 4.2 Heterojunction Bipolar Transistors.- 4.2.1 Transfer Current.- 4.2.2 Offset Voltage.- 4.2.3 Nonequilibrium Carrier Transport.- 4.3 Silicon-Based Semiconductor Hctorostructures.- 4.3.1 Growth of SiGe/Si Heterostructures.- 4.3.2 SiGe Material Parameters.- 4.4 SiGe HBTs.- 4.4.1 Transfer Current.- 4.4.2 Base Transit Time.- 4.4.3 High-Level-Injection Effects.- 4.4.4 Compact Models for SiGe HBTs.- 4.5 Compound Semiconductor HBTs.- 4.5.1 GaAlAs/GaAs HBTs.- 4.5.2 Indium Phosphide.- 4.5.3 Microwave Power Transistors.- 4.6 References.- 5. Noise Modeling.- 5.1 Noise in Semiconductors.- 5.1.1 Shot Noise and Thermal Noise.- 5.1.2 Generation-Recombination Noise.- 5.1.3 Low-Frequency Noise (1/f Noise).- 5.2 Transport Theory of Noise.- 5.2.1 Langevin Approach to the Noise of Ohmic Resistors.- 5.3 Noise of pn Junctions.- 5.3.1 Noise Mechanism of Biased pn Junctions.- 5.3.2 Langevin Approach to the Noise of pn Junction Diodes.- 5.4 Noise Generated by the Transfer Current.- 5.5 High-Frequency Noise Equivalent Circuit.- 5.6 Noise Figure.- 5.6.1 Noise Caused by the Transfer Current.- 5.6.2 Noise Figure.- 5.6.3 Effects of Carrier Multiplication on Noise Figure.- 5.7 Low-Frequency Noise.- 5.8 References.- 6. Basic Circuit Configurations.- 6.1 Common-Emitter Configuration.- 6.1.1 Biasing.- 6.1.2 AC Characteristics.- 6.1.3 Nonlinear Distortion.- 6.2 Common-Collector Configuration.- 6.2.1 Basic Principles.- 6.2.2 AC Characteristics.- 6.3 Common-Base Configuration.- 6.4 The Diode-Connected Bipolar Transistor.- 6.4.1 Realizations.- 6.4.2 Current-Voltage Characteristic.- 6.4.3 High-Frequency Behavior.- 6.5 Current Sources and Active Loads.- 6.5.1 Current Source with Series Feedback.- 6.5.2 Current Mirror.- 6.5.3 Active Load.- 6.6 Differential Amplifiers.- 6.6.1 DC Transfer Characteristic.- 6.6.2 Differential-Mode and Common-Mode Voltage Gain.- 6.7 Analog Multipliers.- 6.8 Two-Transistor Amplifier Stages.- 6.8.1 The Darlington Configuration.- 6.8.2 The Cascode Configuration.- 6.9 Bandgap References.- 6.10 Digital Circuits.- 6.10.1 Characteristics of Digital Circuits.- 6.10.2 Bipolar-Digital-Circuit Techniques.- 6.11 References.- 7. Process Integration.- 7.1 Fabrication of Integrated npn Transistors.- 7.1.1 Collector Isolation.- 7.1.2 Emitter and Base Formation.- 7.2 Passive Components.- 7.2.1 Resistors.- 7.2.2 Capacitors.- 7.2.3 Inductors.- 7.3 PNP Transistors.- 7.3.1 Vertical pnp Transistors with Polysilicon Emitter.- 7.3.2 Lateral pnp Transistors.- 7.4 Reliability.- 7.4.1 Device Degradation.- 7.4.2 Failure of Bipolar Devices due to Electrostatic Discharges.- 7.5 References.- 8. Applications.- 8.1 Emitter-Coupled Logic.- 8.1.1 Single-Ended, Differential and Feedback ECL.- 8.1.2 Noise Margin.- 8.1.3 Flip-Flops.- 8.1.4 Frequency Dividers.- 8.2 High-Speed Optical Transmission Systems.- 8.3 RF Microelectronics.- 8.4 BiCMOS.- 8.5 References.- A. Linear and Nonlinear Response.- A.1 Linear Response.- A.1.1 Step Response, Elmore Delay.- A.2 Nonlinear Systems Without Memory.- A.2.1 Harmonic Distortion, Gain Compression.- A.2.2 Intermodulation Distortion.- A.3 Nonlinear Systems with Memory.- A.3.1 Volterra Series.- A.4 References.- B. Linear Two-Ports, s-Parameters.- B.1 Indefinite Admittance Matrix.- B.2 Terminated Two-Ports.- B.2.1 Input and Output Impedance.- B.2.2 Voltage and Current Gain.- B.2.3 Power Gain.- B.2.4 Stability.- B.2.5 Incident and Reflected Power.- B.3 S-Parameters.- B.3.1 Relations between s-Parameters and Two-Port Parameters.- B.3.2 Matching and Power Gain.- B.4 References.- C. PN Junctions: Details.- C.1 Boundary Conditions at PN Junctions.- C.2 Epitaxial Diode.- C.3 Minority-Carrier Transport in Heavily Doped Emitter Regions.- C.4 High-Frequency Diode Admittance.- C.5 References.- D. Bipolar Transistor: Details.- D.1 Drift Transistor.- D.1.1 Electron Transport Through the Base Region.- D.1.3 Excess Phase.- D.1.4 Collector Transit Time.- D.1.5 Small-Signal Analysis.- D.2 Quasi-Thrce-Dimensional Computations of the Base Resistance.- D.3 Generation of Model Parameters from Layout Data.- D.4 Generalization of the Gummol Transfer Current Relation to Arbitrary Geometries.- D.5 Definition of Series Resistances Within the Integral Charge Control Relation.- D.6 Multiplication Factor.- D.7 References.- E. Noise: Details.- E.1 Some Statistics.- E.1.1 Stochastic Variables, Correlation.- E.1.2 Ensemble Average, Distribution Function.- E.1.3 Spectral Density.- E.1.4 Carson Theorem, Shot Noise.- E.2 Velocity Fluctuations and Diffusion.- E.3 Thermodynamics and Noise.- E.4 Generation-Recombination Noise.- E.5 McWorther Model of 1/f Noise.- E.6 Short-Base Diode with Metal Contact.- E.7 Short-Base Diode with Polysilicon Contact.- E.8 Equivalent-Circuit Representation of Transfer Current Noise.- E.9 References.- F. Overtemperature Developed During Electrostatic Discharges.- F.1 Thermal Conductivity.- F.2 Transient Overtemperature During a Short Pulse.- F.3 References.
Michael Reisch wurde 1957 im oberschwäbischen Bad Waldsee geboren. Er studierte Physik an der TU München und promovierte am Institut für Physikalische Elektronik der TU Wien. Er war von 1983 bis 1991 für die Siemens AG (Zentrale Forschung und Entwicklung) in München tätig. Seit 1991 ist er als Professor an der FH Kempten vor allem für die Lehrgebiete Werkstoffe der Elektrotechnik sowie Elektronische Bauelemente zuständig. Sein berufliches Hauptinteresse gilt der Physik und Modellierung elektronischer Bauelemente - in seiner Freizeit ist er am liebsten mit Tourenski oder Mountainbike in den Bergen unterwegs.
The book gives a detailed presentation of high-frequency bipolar transistors in silicon or silicon-germanium technology with particular emphasis given to todays advanced compact models and their physical foundations. The first part introduces the fundamentals of bipolar transistors on a graduate student level. The second part considers the physics and modeling of bipolar transistors in detail. Part 3 describes basic circuit configurations, aspects of process integration and applications.
1997-2024 DolnySlask.com Agencja Internetowa