Preface to First Edition xiPreface to Second Edition xiiiAcknowledgements xvii1 Electron Spectroscopy: Some Basic Concepts 11.1 Analysis of Surfaces 11.2 Notation 31.2.1 Spectroscopists' Notation 31.2.2 X-ray Notation 41.3 X-ray Photoelectron Spectroscopy 41.4 Auger Electron Spectroscopy (AES) 81.5 Scanning Auger Microscopy 121.6 The Depth of Analysis in Electron Spectroscopy 131.7 Comparison of XPS and AES/SAM 161.8 The Availability of Surface Analytical Equipment 172 Electron Spectrometer Design 192.1 Introduction 192.2 The Vacuum System 192.3 X-ray Sources for XPS 222.3.1 Choice of X-ray Anode 232.3.2 X-ray Monochromators 272.3.3 Synchrotron Sources 302.4 The Electron Gun for AES 312.4.1 Electron Sources 312.4.1.1 Thermionic Emitter 322.4.1.2 Lanthanum Hexaboride Emitter 322.4.1.3 Cold Field Emitter 322.4.1.4 Hot Field Emitter 332.4.1.5 Comparison of Electron Emitters for AES 342.4.2 The Electron Column 352.4.3 Spot Size 352.5 Analysers for Electron Spectroscopy 372.5.1 The Cylindrical Mirror Analyser 382.5.2 The Hemispherical Sector Analyser 412.5.2.1 CAE Mode of Operation 422.5.2.2 CRR Mode of Operation 442.5.2.3 Comparison of CAE and CRR Modes 462.5.2.4 The Transfer Lens 472.5.3 Calibration of the Electron Spectrometer Energy Scale 482.6 Near Ambient Pressure XPS 492.7 Detectors 522.7.1 Channel Electron Multipliers 522.7.2 Microchannel Plates 542.7.3 Two-Dimensional Detectors 542.7.3.1 The Resistive-Anode Detector 552.7.3.2 The Delay-Line Detector 552.8 Small Area XPS 562.8.1 Lens-Defined Small Area XPS 562.8.2 Source-defined Small Area Analysis 572.9 XPS Imaging and Mapping 572.9.1 Serial Acquisition 582.9.2 Parallel Acquisition 592.9.2.1 Parallel Imaging Using a Hemispherical Spectrometer 592.9.2.2 Parallel Imaging Using a Spherical Mirror Analyser 602.9.2.3 Spatial Resolution and Chemical Imaging 612.10 Angle Resolved XPS 642.11 Automation 663 The Electron Spectrum: Qualitative and Quantitative Interpretation 693.1 Introduction 693.2 Qualitative Analysis 693.2.1 Unwanted Features in Electron Spectra 723.2.2 Data Acquisition 723.2.2.1 Core Level Spectra 723.2.2.2 Valence Band Spectra 733.3 Chemical State Information 743.3.1 X-ray Photoelectron Spectroscopy 743.3.2 Peak Fitting of XPS Spectra 783.3.3 Auger Electron Spectroscopy 813.3.4 X-AES 823.3.5 Chemical State Plots 843.3.6 Shakeup Satellites 863.3.7 Multiplet Splitting 873.3.8 Plasmons 873.4 Quantitative Analysis 883.4.1 Quantification in XPS 893.4.1.1 Calculating Atomic Concentration 893.4.1.2 Measuring Peak Intensity 923.4.2 Quantification in AES 944 Compositional Depth Profiling 974.1 Introduction 974.2 Non-destructive Depth Methods 984.2.1 Measurements at a Single Emission Angle 984.2.2 Angle Resolved XPS Measurements 994.2.3 Measurement of Overlayer Thickness Using ARXPS 1014.2.4 Elastic Scattering 1034.2.5 Multilayer Thickness Calculations Using ARXPS 1044.2.6 Compositional Depth Profiles from ARXPS Measurements 1074.2.7 Variation of Analysis Depth with Electron Kinetic Energy 1104.2.8 Background Analysis 1124.3 Depth Profiling by Sputtering with Energetic Ions 1154.3.1 The Sputtering Process 1154.3.2 Experimental Method 1164.3.3 The Nature of the Ion Beam 1184.3.3.1 Noble Gas Ions 1184.3.3.2 Cluster Ions 1194.3.3.3 Metal Ions 1214.3.4 Sputter Yield and Etch Rate 1224.3.5 Factors Affecting the Etch Rate 1234.3.5.1 Material 1234.3.5.2 Ion Current 1234.3.5.3 Ion Energy 1234.3.5.4 Nature of the Ion Beam 1244.3.5.5 Angle of Incidence 1244.3.6 Factors Affecting the Depth Resolution 1244.3.6.1 Ion Beam Characteristics 1244.3.6.2 Crater Quality 1254.3.6.3 Beam Impurities 1254.3.6.4 Information Depth 1264.3.6.5 Original Surface Roughness 1274.3.6.6 Induced Roughness 1274.3.6.7 Preferential Sputtering 1274.3.6.8 Redeposition of Sputtered Material 1284.3.7 Calibration 1284.3.8 Ion Gun Design 1284.3.8.1 Electron Impact Ion Guns 1284.3.8.2 Argon-Cluster Ion Guns 1294.3.8.3 Liquid Metal Ion Guns 1314.4 Sectioning 1314.4.1 FIB Sectioning 1314.4.2 Angle Lapping 1324.4.3 Ball Cratering 1335 Multi-technique Analysis 1355.1 Introduction 1355.2 Ultraviolet Photoelectron Spectroscopy (UPS) 1355.3 Low Energy Ion Scattering Spectroscopy (LEISS) 1375.4 Reflection Electron Energy Loss Spectroscopy (REELS) 1395.4.1 Elastic Scattering 1405.4.2 Inelastic Scattering 1415.5 Work Function Measurements 1425.6 Energy Dispersive X-ray Analysis (EDX) 1436 The Sample 1456.1 Sample Handling 1456.2 Sample Preparation 1476.3 Sample Mounting 1496.4 Sample Stability 1496.5 Contamination and Damage During Analysis 1516.6 Controlling Sample Charging 1526.6.1 Sample Charging in XPS 1526.6.2 Sample Charging in AES 1547 Applications of Electron Spectroscopy in Materials Science 1577.1 Introduction 1577.2 Metallurgy 1577.2.1 Grain Boundary Segregation 1587.2.2 Electronic Structure of Metallic Alloys 1607.2.3 Surface Engineering 1637.3 Corrosion Science 1687.4 Ceramics 1767.5 Microelectronics and Semiconductor Materials 1817.5.1 Mapping Semiconductor Devices Using AES 1827.5.2 XPS Failure Analysis of Microelectronic Devices 1867.5.3 Depth Profiling of Semiconductor Materials 1887.5.3.1 Transistor Gate Dielectrics 1887.5.3.2 Inorganic Chemical State Profiling 1897.5.3.3 Organic Semiconductor Profiling 1907.6 Polymeric Materials 1937.7 Adhesion Science 2027.8 Nanotechnology 2107.9 Biology 2157.10 Energy 2198 Comparison of XPS and AES with Other Analytical Techniques 223Glossary 229Bibliography 239Appendix 1 247Auger Electron Energies 247Appendix 2 249Table of Binding Energies Accessible with Al Kalpha Radiation 250Appendix 3 255Documentary Standards in Surface Analysis 255The Scope of TC201 255The Purpose of TC201 255International Standards Relevant to Electron Spectroscopies 256Index 259
John F. Watts FREng is Professor of Materials Science in the Department of Mechanical Engineering Sciences at the University of Surrey. He currently leads a Research Group applying surface analysis methods to investigations in materials science and is Editor-in-Chief of the Wiley journal Surface and Interface Analysis.John Wolstenholme is now retired, having worked for Thermo Fisher Scientific (formally VG Scientific) for over 28 years in roles such as sales, marketing and applications. He remains as an active participant on the ISO Technical Committee 201, developing and revising International Standards relevant to electron spectroscopy.