ISBN-13: 9786131549397 / Francuski / Miękka / 2018 / 136 str.
Un des objectifs de ce travail est d'etablir un certain nombre de resultats de Cohomologie Galoisienne non abelienne dont plusieurs ont ete conjectures par J.P.Serre et sont lies a la dimension cohomologique 2 des corps de base.Nous avons besoin de la theorie de 2-Cohomologie non abelienne de Giraud construite a partir de la notion de "gerbe" de Grothendieck.Mais, cette derniere n'est pas fonctorielle.Nous sommes donc amenes a etablir, parallelement a la theorie de Giraud, une theorie fonctorielle substituant a la notion de gerbes "liees" de Giraud la notion de "systeme de coefficients" operant sur les gerbes.A l'aide de cette theorie fonctorielle, nous pouvons alors reduire la 2-Cohomologie Galoisienne des groupes reductifs a celle des sous-groupes de Borel et, de la, aux sous-tores maximaux.Ceci, joint a la theorie de Bruhat -Tits, permet le calcul de la 2-Cohomologie Galoisienne des groupes semi-simples G sur les corps locaux K dont le corps residuel est de dimension cohomologique inferieure ou egal a 1 et sur certains corps globaux(par ex. les corps de nombres purement imaginaires).Dans ces cas, nous montrons que les K-gerbes localement liees par G sont neutres.
Un des objectifs de ce travail est detablir un certain nombre de resultats de Cohomologie Galoisienne non abelienne dont plusieurs ont ete conjectures par J.P.Serre et sont lies a la dimension cohomologique 2 des corps de base.Nous avons besoin de la theorie de 2-Cohomologie non abelienne de Giraud construite a partir de la notion de "gerbe" de Grothendieck.Mais,cette derniere nest pas fonctorielle.Nous sommes donc amenes a etablir, parallelement a la theorie de Giraud ,une theorie fonctorielle substituant a la notion de gerbes "liees" de Giraud la notion de "systeme de coefficients" operant sur les gerbes.A laide de cette theorie fonctorielle,nous pouvons alors reduire la 2-Cohomologie Galoisienne des groupes reductifs a celle des sous-groupes de Borel et,de la,aux sous-tores maximaux.Ceci,joint a la theorie de Bruhat -Tits,permet le calcul de la 2-Cohomologie Galoisienne des groupes semi-simples G sur les corps locaux K dont le corps residuel est de dimension cohomologique inferieure ou egal a 1 et sur certains corps globaux(par ex. les corps de nombres purement imaginaires).Dans ces cas,nous montrons que les K-gerbes localement liees par G sont neutres.