This is an indispensable reference for those mathematicians that conduct research activity in applications of fixed-point theory to boundary value problems for nonlinear difference equations. Coverage includes second-order finite difference equations and systems of second-order finite difference equations subject to diverse multi-point boundary conditions, and various methods to study the existence of positive solutions for these problems.
This is an indispensable reference for those mathematicians that conduct research activity in applications of fixed-point theory to boundary value pro...
This volume introduces noncommutative integration theory on semifinite von Neumann algebras and the theory of singular traces for symmetric operator spaces. Deeper aspects of the association between measurability, poles and residues of spectral zeta functions, and asymptotics of heat traces are studied. Applications in Connes’ noncommutative geometry that are detailed include integration of quantum differentials, measures on fractals, and Connes’ character formula concerning the Hochschild class of the Chern character.
This volume introduces noncommutative integration theory on semifinite von Neumann algebras and the theory of singular traces for symmetric operator s...
The study of minimal surfaces is an important subject in differential geometry, and Nevanlinna theory is an important subject in complex analysis and complex geometry. This book discusses the interaction between these two subjects. In particular, it describes the study of the value distribution properties of the Gauss map of minimal surfaces through Nevanlinna theory, a project initiated by the prominent differential geometers Shiing-Shen Chern and Robert Osserman.
The study of minimal surfaces is an important subject in differential geometry, and Nevanlinna theory is an important subject in complex analysis and ...
Maximally subelliptic partial differential equations (PDEs) are a far-reaching generalization of elliptic PDEs. Elliptic PDEs hold a special place: sharp results are known for general linear and even fully nonlinear elliptic PDEs. Over the past half-century, important results for elliptic PDEs have been generalized to maximally subelliptic PDEs. This text presents this theory and generalizes the sharp, interior regularity theory for general linear and fully nonlinear elliptic PDEs to the maximally subelliptic setting.
Maximally subelliptic partial differential equations (PDEs) are a far-reaching generalization of elliptic PDEs. Elliptic PDEs hold a special place: sh...