Support vector machines (SVMs), a promising machine learning method, is a powerful tool for chemical data analysis and for modeling complex physicochemical and biological systems. It is of growing interest to chemists and has been applied to problems in such areas as food quality control, chemical reaction monitoring, metabolite analysis, QSAR/QSPR, and toxicity. This book presents the theory of SVMs in a way that is easy to understand regardless of mathematical background. It includes simple examples of chemical and OMICS data to demonstrate the performance of SVMs and compares SVMs to other...
Support vector machines (SVMs), a promising machine learning method, is a powerful tool for chemical data analysis and for modeling complex physicoche...
Yizeng Liang, Qing-Song Xu, Hong-Dong Li, Dong-Sheng Cao
Support vector machines (SVMs) are used in a range of applications, including drug design, food quality control, metabolic fingerprint analysis, and microarray data-based cancer classification. While most mathematicians are well-versed in the distinctive features and empirical performance of SVMs, many chemists and biologists are not as familiar with what they are and how they work. Presenting a clear bridge between theory and application, Support Vector Machines and Their Application in Chemistry and Biotechnology provides a thorough description of the mechanism of SVMs from the point of...
Support vector machines (SVMs) are used in a range of applications, including drug design, food quality control, metabolic fingerprint analysis, and m...