An emerging topic in software engineering and data mining, specification mining tackles software maintenance and reliability issues that cost economies billions of dollars each year. The first unified reference on the subject, Mining Software Specifications: Methodologies and Applications describes recent approaches for mining specifications of software systems. Experts in the field illustrate how to apply state-of-the-art data mining and machine learning techniques to address software engineering concerns.
In the first set of chapters, the book introduces a...
An emerging topic in software engineering and data mining, specification mining tackles software maintenance and reliability issues that cost econo...
A lot of digital ink has been spilled on "big data" over the past few years. Most of this surge owes its origin to the various types of unstructured data in the wild, among which the proliferation of text-heavy data is particularly overwhelming, attributed to the daily use of web documents, business reviews, news, social posts, etc., by so many people worldwide.A core challenge presents itself: How can one efficiently and effectively turn massive, unstructured text into structured representation so as to further lay the foundation for many other downstream text mining applications? In...
A lot of digital ink has been spilled on "big data" over the past few years. Most of this surge owes its origin to the various types of unstructured d...
Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional-they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task. This book presents data mining techniques that turn unstructured text data into...
Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social network...
The real-world data, though massive, is largely unstructured, in the form of natural-language text. It is challenging but highly desirable to mine structures from massive text data, without extensive human annotation and labeling. In this book, we investigate the principles and methodologies of mining structures of factual knowledge (e.g., entities and their relationships) from massive, unstructured text corpora. Departing from many existing structure extraction methods that have heavy reliance on human annotated data for model training, our effort-light approach leverages human-curated facts...
The real-world data, though massive, is largely unstructured, in the form of natural-language text. It is challenging but highly desirable to mine str...
Real-world physical and abstract data objects are interconnected, forming gigantic, interconnected networks. By structuring these data objects and interactions between these objects into multiple types, such networks become semi-structured heterogeneous information networks. Most real-world applications that handle big data, including interconnected social media and social networks, scientific, engineering, or medical information systems, online e-commerce systems, and most database systems, can be structured into heterogeneous information networks. Therefore, effective analysis of...
Real-world physical and abstract data objects are interconnected, forming gigantic, interconnected networks. By structuring these data objects and int...
The "big data" era is characterized by an explosion of information in the form of digital data collections, ranging from scientific knowledge, to social media, news, and everyone's daily life. Examples of such collections include scientific publications, enterprise logs, news articles, social media, and general web pages. Valuable knowledge about multi-typed entities is often hidden in the unstructured or loosely structured, interconnected data. Mining latent structures around entities uncovers hidden knowledge such as implicit topics, phrases, entity roles and relationships. In this...
The "big data" era is characterized by an explosion of information in the form of digital data collections, ranging from scientific knowledge, to soci...
This book provides a principled data-driven framework that progressively constructs, enriches, and applies taxonomies without leveraging massive human annotated data. Traditionally, people construct domain-specific taxonomies by extensive manual curations, which is time-consuming and costly. In today's information era, people are inundated with the vast amounts of text data. Despite their usefulness, people haven't yet exploited the full power of taxonomies due to the heavy curation needed for creating and maintaining them. To bridge this gap, the authors discuss automated taxonomy discovery...
This book provides a principled data-driven framework that progressively constructs, enriches, and applies taxonomies without leveraging massive human...