When a dynamical system has a large number of parameters it is not possible to get a completely comprehensive picture of all the types of behavior that it may display and one must be content with surveying the system along various corridors of lower dimension. Using an example with three differential equations and six parameters it is shown how the available methods of singularity theory, bifurcation analysis, normal forms, etc. can be used to build up a picture of varied and interesting behavior. The model is a generalization of the Gray-Scott reaction scheme in a single stirred vessel to a...
When a dynamical system has a large number of parameters it is not possible to get a completely comprehensive picture of all the types of behavior tha...
A ubiquitous tool in mathematical biology and chemical engineering, the chemostat often produces instabilities that pose safety hazards and adversely affect the optimization of bioreactive systems. Singularity theory and bifurcation diagrams together offer a useful framework for addressing these issues. Based on the authors' extensive work in this field, Dynamics of the Chemostat: A Bifurcation Theory Approach explores the use of bifurcation theory to analyze the static and dynamic behavior of the chemostat. Introduction The authors first survey the major work that has been carried out...
A ubiquitous tool in mathematical biology and chemical engineering, the chemostat often produces instabilities that pose safety hazards and adversely ...