This book forms the much needed strong interface between algorithmic complexity and computer experiments using a careful blending of traditional ideas in algorithms with untraditional research in computer experiments (esp. fitting stochastic models to non-random data). While establishing the aforesaid interface, the important role of statistical bounds and their empirical estimates obtained over a finite range (called empirical O) is discovered as a bonus. While these bounds are very valuable for the average case, our research suggests in addition that there is no need to be ...
This book forms the much needed strong interface between algorithmic complexity and computer experiments using a careful blending of traditional id...