The classical sampling problem is to reconstruct entire functions with given spectrum $S$ from their values on a discrete set $L$. From the geometric point of view, the possibility of such reconstruction is equivalent to determining for which sets $L$ the exponential system with frequencies in $L$ forms a frame in the space $L^2(S)$. The book also treats the problem of interpolation of discrete functions by analytic ones with spectrum in $S$ and the problem of completeness of discrete translates. The size and arithmetic structure of both the spectrum $S$ and the discrete set $L$ play a...
The classical sampling problem is to reconstruct entire functions with given spectrum $S$ from their values on a discrete set $L$. From the geometric ...