The authors will classify Rohlin flows on von Neumann algebras up to strong cocycle conjugacy. This result provides alternative approaches to some preceding results such as Kawahigashi's classification of flows on the injective type II$_1$ factor, the classification of injective type III factors due to Connes, Krieger and Haagerup and the non-fullness of type III$_0$ factors. Several concrete examples are also studied.
The authors will classify Rohlin flows on von Neumann algebras up to strong cocycle conjugacy. This result provides alternative approaches to some pre...
The authors study two kinds of actions of a discrete amenable Kac algebra. The first one is an action whose modular part is normal. They construct a new invariant which generalizes a characteristic invariant for a discrete group action, and we will present a complete classification. The second is a centrally free action. By constructing a Rohlin tower in an asymptotic centralizer, the authors show that the Connes-Takesaki module is a complete invariant.
The authors study two kinds of actions of a discrete amenable Kac algebra. The first one is an action whose modular part is normal. They construct a n...