The author proves the existence of an almost full measure set of $(3n-2)$-dimensional quasi-periodic motions in the planetary problem with $(1+n)$ masses, with eccentricities arbitrarily close to the Levi-Civita limiting value and relatively high inclinations. This extends previous results, where smallness of eccentricities and inclinations was assumed. The question had been previously considered by V. I. Arnold in the 1960s, for the particular case of the planar three-body problem, where, due to the limited number of degrees of freedom, it was enough to use the invariance of the system by...
The author proves the existence of an almost full measure set of $(3n-2)$-dimensional quasi-periodic motions in the planetary problem with $(1+n)$ mas...