During the last century, global analysis was one of the main sources of interaction between geometry and topology. One might argue that the core of this subject is Morse theory, according to which the critical points of a generic smooth proper function on a manifold $M$ determine the homology of the manifold. Morse envisioned applying this idea to the calculus of variations, including the theory of periodic motion in classical mechanics, by approximating the space of loops on $M$ by a finite-dimensional manifold of high dimension. Palais and Smale reformulated Morse's calculus of...
During the last century, global analysis was one of the main sources of interaction between geometry and topology. One might argue that the core of th...