Birational rigidity is a striking and mysterious phenomenon in higher-dimensional algebraic geometry. It turns out that certain natural families of algebraic varieties (for example, three-dimensional quartics) belong to the same classification type as the projective space but have radically different birational geometric properties. In particular, they admit no non-trivial birational self-maps and cannot be fibred into rational varieties by a rational map. The origins of the theory of birational rigidity are in the work of Max Noether and Fano; however, it was only in 1970 that Iskovskikh and...
Birational rigidity is a striking and mysterious phenomenon in higher-dimensional algebraic geometry. It turns out that certain natural families of al...