The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few general principles validate large classes of analytic/geometric inequalities, old and new. This point of view leads to ""systematic"" approaches for proving the most basic inequalities, but also for improving them, and for devising new ones--sometimes at will--and often on demand. These general principles also offer novel ways for estimating best constants and for deciding whether these are attained in appropriate function spaces. As such,...
The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few gener...