The need to quantify and characterise uncertainties arising in mathematical models with unknown parameters leads to the rapidly evolving field of uncertainty quantification. This book provides readers with the concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models. It covers concepts from probability and statistics such as parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, and sensitivity analysis. The book goes on to explore applications and open...
The need to quantify and characterise uncertainties arising in mathematical models with unknown parameters leads to the rapidly evolving field of unce...