A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biology, optical-to-micro waves, photonics, nanoelectronics and plasmas. The state-of-the-art numerical methods described include: Statistical fluctuation formulae for the dielectric constant Particle-Mesh-Ewald, Fast-Multipole-Method and image-based reaction field method for long-range interactions High-order singular/hypersingular (Nystrom collocation/Galerkin) boundary and volume integral methods in layered...
A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biol...
This book introduces the fundamental concepts, methods, and applications of Hausdorff calculus, with a focus on its applications in fractal systems. Topics such as the Hausdorff diffusion equation, Hausdorff radial basis function, Hausdorff derivative nonlinear systems, PDE modeling, statistics on fractals, etc. are discussed in detail. It is an essential reference for researchers in mathematics, physics, geomechanics, and mechanics.
This book introduces the fundamental concepts, methods, and applications of Hausdorff calculus, with a focus on its applications in fractal systems. T...