Modelling real-life systems and phenomena using mathematical based formalisms is ubiquitous in science and engineering. The reason is that mathematics offer a suitable framework to carry out formal and rigorous analysis of these systems. For instance, in software engineering, formal methods are among the most efficient tools to identify flaws in software. The behavior of many real-life systems is inherently stochastic which require stochastic models such as labelled Markov processes (LMPs), Markov decision processes (MDPs), predictive state representations (PSRs), etc. This...
Modelling real-life systems and phenomena using mathematical based formalisms is ubiquitous in science and engineering. The reason is that mathematics...