In this monograph the authors present Newton-type, Newton-like and other numerical methods, which involve fractional derivatives and fractional integral operators, for the first time studied in the literature. All for the purpose to solve numerically equations whose associated functions can be also non-differentiable in the ordinary sense. That is among others extending the classical Newton method theory which requires usual differentiability of function. Chapters are self-contained and can be read independently and several advanced courses can be taught out of this book. An extensive list...
In this monograph the authors present Newton-type, Newton-like and other numerical methods, which involve fractional derivatives and fractional integr...
This book is about the generalization and modernization of approximation by neural network operators. Functions under approximation and the neural networks are Banach space valued. These are induced by a great variety of activation functions deriving from the arctangent, algebraic, Gudermannian, and generalized symmetric sigmoid functions. Ordinary, fractional, fuzzy, and stochastic approximations are exhibited at the univariate, fractional, and multivariate levels. Iterated-sequential approximations are also covered. The book's results are expected to find applications in the many areas of...
This book is about the generalization and modernization of approximation by neural network operators. Functions under approximation and the neural net...