Compared to infrared lasers, high-power continuous-wave single-frequency (HPCWSF) laser sources emitting green light are beneficial in various engineering and physics applications. But in the past their output powers were limited to about 20 W. Light shining through a wall (LSW) experiments utilized pulsed lasers in the past. Their sensitivity was limited by the available average output powers of those systems with suitable beam quality and pulse length. These remained below 10 W. In this thesis a 532 nm HPCWSF laser source with an unprecedented long-term stable output power of 134 W was...
Compared to infrared lasers, high-power continuous-wave single-frequency (HPCWSF) laser sources emitting green light are beneficial in various enginee...
This work presents approaches to extend limits of scanning probe microscopy techniques towards more versatile instruments using integrated sensor concepts. For structural surface analysis, magnetoresistive sensing is introduced and thermoresistive sensing is applied to study nanoscale phonon transport in chain-like molecules. Investigating with these techniques the properties of shape memory polymers, a fabrication method to design application-inspired micro- and nanostructures is introduced.
This work presents approaches to extend limits of scanning probe microscopy techniques towards more versatile instruments using integrated sensor conc...