Most nonlinear differential equations arising in natural sciences admit chaotic behavior and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-time dimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual...
Most nonlinear differential equations arising in natural sciences admit chaotic behavior and cannot be solved analytically. Integrable systems lie on ...