The theory of fixed points finds its roots in the work of Poincare, Brouwer, and Sperner and makes extensive use of such topological notions as continuity, compactness, homotopy, and the degree of a mapping. Fixed point theorems have numerous applications in mathematics; most of the theorems ensuring the existence of solutions for differential, integral, operator, or other equations can be reduced to fixed point theorems. In addition, these theorems are used in such areas as mathematical economics and game theory. This book presents a readable exposition of fixed point theory. The author...
The theory of fixed points finds its roots in the work of Poincare, Brouwer, and Sperner and makes extensive use of such topological notions as contin...