The nine finite, planar, 3-connected, edge-transitive graphs have been known and studied for many centuries. The infinite, locally finite, planar, 3-connected, edge-transitive graphs can be classified according to the number of their ends (the supremum of the number of infinite components when a finite subgraph is deleted). Prior to this study the 1-ended graphs in this class were identified by Grunbaum and Shephard as 1-skeletons of tessellations of the hyperbolic plane; Watkins characterized the 2-ended members. Any remaining graphs in this class must have uncountably many ends. In this...
The nine finite, planar, 3-connected, edge-transitive graphs have been known and studied for many centuries. The infinite, locally finite, planar, 3-c...
This book presents rigidity theory in a historical context. The combinatorial aspects of rigidity are isolated and framed in terms of a special class of matroids, which are a natural generalization of the connectivity matroid of a graph. The book includes an introduction to matroid theory and an extensive study of planar rigidity. The final chapter is devoted to higher dimensional rigidity, highlighting the main open questions. Also included is an extensive annotated bibiolography with over 150 entries. The book is aimed at graduate students and researchers in graph theory and combinatorics...
This book presents rigidity theory in a historical context. The combinatorial aspects of rigidity are isolated and framed in terms of a special class ...