Depth sensing is pivotal in robotics; however, monocular depth estimation encounters significant challenges. Existing algorithms relying on large-scale labeled data and large Deep Convolutional Neural Networks (DCNNs) hinder real-world applications. We propose two lightweight architectures that achieve commendable accuracy rates of 91.2% and 90.1%, simultaneously reducing the Root Mean Square Error (RMSE) of depth to 4.815 and 5.036. Our lightweight depth model operates at 29-44 FPS on the Jetson Nano GPU, showcasing efficient performance with minimal power consumption.Moreover, we introduce...
Depth sensing is pivotal in robotics; however, monocular depth estimation encounters significant challenges. Existing algorithms relying on large-scal...