Plant physiological responses to increasing atmospheric CO2 concentration (iCO2), including enhanced photosynthesis and reduced stomatal conductance, impact regional and global climate. Here, I describe recent advances in understanding these effects through Earth system models (ESMs). Idealized simulations of a 1% annual iCO2 show that despite fertilization, CO2 physiological forcing contributes to 10% of warming and at least 30% of future precipitation decline in Amazonia. This reduces aboveground vegetation carbon storage and triggers positive carbon-climate feedback. ESM simulations...
Plant physiological responses to increasing atmospheric CO2 concentration (iCO2), including enhanced photosynthesis and reduced stomatal conductance, ...
Plants and insects have co-evolved over millions of years, resulting in complex and dynamic interactions that have shaped the biodiversity of our planet. Plant-insect relationships may exhibit features of mutualism, antagonism and commensalism. Plant-insect interactions have significant implications for agroecosystem functioning and services. Thus, understanding the complex relationships between plants and insects is critical for sustainable agriculture and ecosystem management. These interactions are also critical to the interplay between agroecosystems and their ecological implications for...
Plants and insects have co-evolved over millions of years, resulting in complex and dynamic interactions that have shaped the biodiversity of our plan...
Plants and insects have co-evolved over millions of years, resulting in complex and dynamic interactions that have shaped the biodiversity of our planet. Plant-insect relationships may exhibit features of mutualism, antagonism and commensalism. Plant-insect interactions have significant implications for agroecosystem functioning and services. Thus, understanding the complex relationships between plants and insects is critical for sustainable agriculture and ecosystem management. These interactions are also critical to the interplay between agroecosystems and their ecological implications for...
Plants and insects have co-evolved over millions of years, resulting in complex and dynamic interactions that have shaped the biodiversity of our plan...
Pflanzen und Insekten haben sich über Millionen von Jahren gemeinsam entwickelt, was zu komplexen und dynamischen Interaktionen geführt hat, die die biologische Vielfalt auf unserem Planeten geprägt haben. Die Beziehungen zwischen Pflanzen und Insekten können Merkmale von Mutualismus, Antagonismus und Kommensalismus aufweisen. Die Interaktionen zwischen Pflanzen und Insekten haben erhebliche Auswirkungen auf das Funktionieren von Agrarökosystemen und deren Dienstleistungen. Daher ist das Verständnis der komplexen Beziehungen zwischen Pflanzen und Insekten von entscheidender Bedeutung...
Pflanzen und Insekten haben sich über Millionen von Jahren gemeinsam entwickelt, was zu komplexen und dynamischen Interaktionen geführt hat, die die...
Les plantes et les insectes ont évolué ensemble pendant des millions d'années, donnant lieu à des interactions complexes et dynamiques qui ont façonné la biodiversité de notre planète. Les relations plantes-insectes peuvent présenter des caractéristiques de mutualisme, d'antagonisme et de commensalisme. Les interactions plantes-insectes ont des implications significatives sur le fonctionnement des agroécosystèmes et les services qu'ils rendent. Il est donc essentiel de comprendre les relations complexes entre les plantes et les insectes pour assurer une agriculture durable et une...
Les plantes et les insectes ont évolué ensemble pendant des millions d'années, donnant lieu à des interactions complexes et dynamiques qui ont fa�...